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S. N. Kruzhkov’s lectures
on first-order quasilinear PDEs

Gregory A. Chechkin and Andrey Yu. Goritsky

Abstract. The present contribution originates from short notes intended to accompany the lectures of
Professor Stanislav Nikolaı̆evich Kruzhkov given for the students of the Moscow State Lomonosov
University during the years 1994–1997. Since then, they were enriched by many exercises which
should allow the reader to assimilate more easily the contents of the lectures and to appropriate the
fundamental techniques. This text is prepared for graduate students studying PDEs, but the exposi-
tion is elementary, and no previous knowledge of PDEs is required. Yet acommand of basic analysis
and ODE tools is needed. The text can also be used as an exercise book.

The lectures provide an exposition of the nonlocal theory of quasilinear partial differential equa-
tions of first order, also called conservation laws. According to S. N. Kruzhkov’s “ideology”, much
attention is paid to the motivation (from both the mathematical viewpoint and the context of applica-
tions) of each step in the development of the theory. Also the historical development of the subject
is reflected in these notes.

We consider questions of local existence of smooth solutions to Cauchy problems for linear and
quasilinear equations. We expose a detailed theory of discontinuous weaksolutions to quasilinear
equations with one spatial variable. We derive the Rankine–Hugoniot condition, motivate in various
ways admissibility conditions for generalized (weak) solutions and relate theadmissibility issue to
the notions of entropy and of energy. We pay special attention to the resolution of the so-called
Riemann problem. The lectures contain many original problems and exercises; many aspects of the
theory are explained by means of examples. The text is completed by an afterword showing that the
theory of conservation laws is yet full of challenging questions and awaiting for new ideas.0

Keywords. PDE, first-order quasilinear PDE, characteristics, generalized solution, shock wave, rar-
efaction wave, admissibility condition, entropy, Riemann problem.

AMS classification.35F20, 35F25, 35L65.

0Note added by the translator (NT)— The authors, the translator and the editors made an effort toproduce
a readable English text while preserving the flavour of S. N. Kruzhkov’s expression and his original way of
teaching. The reading of the lectures will surely require some effort (for instance, many comments and precisions
are given in parentheses). In some cases, we kept the original“russian” terminology (usually accompanied by
footnote remarks), either because it does not have an exact “western” counterpart, or because it was much used
in the founding works of the Soviet researchers, including S. N. Kruzhkov himself.

We hope that the reader will be recompensed for her or his effort by the vivacity of the exposition and by the
originality of the approach. Indeed, while at the mid-1990th, only few treaties on the subject of conservation
laws were available (see [20, 48, 49]), the situation changed completely in the last ten years. The textbooks and
monographs [11, 14, 22, 32, 33, 35, 47] are mainly concerned with conservation laws and systems. With respect
to the material covered, the present notes can be compared withthe introductory chapters of [11, 22, 33] and with
the relevant chapters of the already classical PDE textbook[16]. Yet in the present lecture notes the exposition is
quite different, with a strong emphasis on examples and motivation of the theory.
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Introduction

The study of first-order partial differential equations is almost as ancient as the notion
of the partial derivative. PDEs of first order appear in many mechanical and geometri-
cal problems, due to the physical meaning of the notion of derivative (the velocity of
motion) and to its geometrical meaning (the tangent of the angle). Local theory of such
equations was born in the 18th century.

In many problems of this type one of the variables is the time variable, and processes
can last for a sufficiently long time. During this period, some singularities ofclassical
solutions can appear. Among these singularities, we consider only weak discontinuities
(which are jumps of derivatives of the solution) and strong discontinuities(which are
jumps of the solutions themselves). We do not deal with the “blow up”-type singulari-
ties.

It is clear that after the singularities have appeared, in order to give a meaning
to the equation under consideration one has to define weak derivatives and weak so-
lutions. These notions were introduced into mathematical language only in the20th
century. The first mathematical realization of this “ideology” was the classical paper
of E. Hopf [23] (1950). In this paper, a nonlocal theory for the Cauchy problem was
constructed for the equation

ut +
(

u2/2
)

x
= 0 (0.1)

with initial datum
u
∣

∣

t=0
= u0(x), (0.2)

whereu0(x) is an arbitrary bounded measurable function. The equation

ut + (f(u))x = 0 (0.3)

is a natural generalization of equation (0.1). Important results for the nonlocal theory
of this equation were obtained (in the chronological order of the papers)by O. A. Olĕı-
nik [36, 37], A. N. Tikhonov, A. A. Samarskiı̆ [50], P. D. Lax [31], O. A. Lady-
zhenskaya [29], I. M. Gel’fand [18].1 The most complete theory of the Cauchy prob-
lem (0.3), (0.2) in the space of bounded measurable functions was achieved in the
papers by S. N. Kruzhkov [25, 26] (see also [27]).2

1 Derivation of the equations

The Hopf equation. Consider a one-dimensional medium consisting of particles
moving without interaction in the absence of external forces. Denote byu(t, x) the
velocity of the particle located at the pointx at the time instantt. If x = ϕ(t) is the

This is a beginner’s course on conservation laws; in a sense,it stops just where the modern theory begins,
before advanced analysis techniques enter the stage. For further reading, we refer to any of the above textbooks.

1NT — Throughout the lectures, no attempt is made to give a complete account on the works on the subject
of first-order quasilinear equations; the above referenceswere those that most influenced S. N. Kruzhkov’s work.

2NT — Also should be mentioned the contribution by A. I. Vol’pert [52], who constructed a complete well-
posedness theory in the smaller classBV of all functions of bounded variation. As shown in [52], thisclass is a
convenient generalization of the class of piecewise smooth functions widely used in the present lectures.
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trajectory of a fixed particle, then the velocity of this particle is ˙ϕ(t) = u(t, ϕ(t)), and
the acceleration ¨ϕ(t) is equal to zero for allt. Hence,

0 =
d2ϕ

dt2
=

d

dt
u(t, ϕ(t)) =

∂u

∂t
+
∂u

∂x
ϕ̇ =

∂u

∂t
+
∂u

∂x
u.

The obtained equation
ut + uux = 0, (1.1)

which describes the velocity fieldu of non-interacting particles, is called the Hopf
equation.

The continuity (or mass conservation) equation. This equation, usually presented
in a course on the mechanics of solids, describes the movement of a fluid(a liquid or a
gas) inR

n if there are no sinks nor sources. Denote the velocity vector of the fluid by
v(x, t) = (v1, . . . , vn) and its density byρ(x, t). Let us fix a domainV ⊂ R

n. At the
momentt, the mass of the fluid contained in this domain is equal to

MV (t) =

∫

V

ρ(x, t) dx;

this mass is changing with the ratedMV /dt. On the other hand, in the absence of
sources and sinks insideV , the change of massMV is only due to movements of the
fluid through the boundary∂V of the domain, i.e., the rate of change of the massMV (t)
is equal to the flux of the fluid through∂V :

dMV

dt
= −

∫

∂V

(v(x, t), ν) · ρ(x, t) dSx.

Here(v, ν) is the scalar product of the velocity vectorv and the outward unit normal
vectorν to the boundary∂V at the pointx ∈ ∂V ; dSx is an element of area on∂V .

Hence, we have

d

dt

∫

V

ρ(x, t) dx = −

∫

∂V

(v(x, t), ν) · ρ(x, t) dSx. (1.2)

Under the assumption thatρ andv are sufficiently smooth, we rewrite the right-hand
side of the formula (1.2) with the help of the divergence theorem (the Gauss–Green
formula), i.e., using the fact that the integral of the divergence overa domain is equal
to the flux through the boundary of this domain:

∫

V

∂ρ

∂t
dx = −

∫

V

div(ρv) dx. (1.3)

Here div is the divergence operator with respect to the spatial variables. Let us remind
that the divergence of the vector fielda(x) = (a1, . . . , an) ∈ R

n is the scalar

div a = (a1)x1 + · · · + (an)xn
.

Since the domainV ⊂ R
n is arbitrary, using (1.3) we get the so-called continuity

equation, well-known in hydrodynamics:

∂ρ

∂t
+ div(ρv) = 0. (1.4)
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Equation of fluid infiltration through sand. For the sake of simplicity, we introduce
several natural assumptions. Suppose that the fluid moves under the sole action of the
gravity, i.e., the direction of the movement is vertical and there is no dependence on
horizontal coordinates. Neither sources nor sinks are present. The speed of infiltration
v is a function of the densityρ ≡ u(t, x), i.e.,v = v(u).

It is experimentally verified that the dependencev(u) has a form as in Figure 1.
On the segment[0, u0] one can assume that the dependence is almost parabolic, i.e.,
v(u) = Cu2.

Figure 1. Experimental dependencev = v(u).

In the one-dimensional case under consideration, the equation (1.4) will be rewrit-
ten as follows :

ut(t, x) + [u(t, x) · v (u(t, x))]x = 0, (1.5)

or

ut + p(u)ux = 0, where p(u) = v(u) + v′(u)u.

Keeping in mind the experimental dependence of the speed of infiltration onthe den-
sity, we assume thatv(u) = u2/3, and finally we get

ut + u2ux = 0.

The traffic equation. This equation can also be derived from the one-dimensional
(in x) continuity equation (1.4). In traffic problems,u(t, x) represents the density of
cars on the road (at pointx at timet); and the dependence of the velocityv of cars on
the densityu is linear:

v(u) = C − ku, C, k = const> 0.

In this case, equation (1.5) reads as follows:

ut + (Cu− ku2)x = 0.
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2 The local classical theory

First order PDEs can be solved locally by means of methods of the theoryof ordinary
differential equations, using the so-calledcharacteristic system. From the physical
point of view this fact can be considered as an expression of the duality of the wave
theory and the particle theory of media. The field satisfies a PDE of first order; and the
behaviour of the particles constituting the field is described by a system of ODEs. The
connection between the first-order PDE and the corresponding system of ODEs allows
to study the behaviour of particles instead of studying the evolution of waves.

It should be noted that the majority of questions in this chapter are considered in
the textbooks on ODEs (for instance, [3, Chapter 2]). Different exercises on linear and
quasilinear equations of first order can be found in [17, §20].

Below we remind basic notions of the aforementioned local theory for linear and
quasilinear equations.

2.1 Linear equations

Let v = v(x) be a smooth vector field in a domainΩ ⊂ R
n.

Definition 2.1.The equation

Lv[u] ≡ v1(x)
∂u

∂x1
+ · · · + vn(x)

∂u

∂xn
= 0. (2.1)

is said to be alinear homogeneousPDE of first-order.

A continuously differentiable functionu = u(x) is calledclassicalsolution of this
equation ifu satisfies the equation at any point of its domain.

Recall that in the ODE theory, the operatorLv ≡ v1
∂

∂x1
+ · · ·+ vn

∂
∂xn

is called the
derivation operator along the vector fieldv. Geometrically, equation (2.1) means that
the gradient∇u ≡

(

∂u
∂x1

, . . . , ∂u
∂xn

)

of the unknown functionu = u(x) is orthogonal to
the vector fieldv in all points of the domainΩ.

A smooth functionu = u(x) is a solution of the equation (2.1) if and only ifu is
constant along the phase curves of the fieldv, i.e., it is the first integral of the system
of equations



















ẋ1 = v1(x1, . . . , xn),

ẋ2 = v2(x1, . . . , xn),

· · ·

ẋn = vn(x1, . . . , xn).

(2.2)

The system (2.2), which can be written in vector form ˙x = v(x), is calledthe charac-
teristic system of the linear equation(2.1). A solution of the characteristic system is
calleda characteristic, the vector fieldv = v(x) over then-dimensional space ofx is
calledthe characteristic vector field of the linear equation.

Definition 2.2.A linear inhomogeneousfirst-order PDE is the equation

Lv[u] = f(x), (2.3)

wheref = f(x) is a given function.
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Equation (2.3) expresses the fact that if we move along the characteristic x = x(t)
(i.e., along the solutionx = x(t) of the system (2.2)), thenu(x(t)) is changing with
the given speedf(x(t)). Thus, in the case of an inhomogeneous linear equation, the
characteristic system (2.2) should be supplemented with the additional equation onu:

u̇ = f(x1, . . . , xn). (2.4)

2.2 The Cauchy problem

Definition 2.3.TheCauchy problemfor a first-order partial differential equation is the
problem of finding the solutionu = u(x) of this equation satisfying the initial condition

u
∣

∣

γ
= u0(x), (2.5)

whereγ ⊂ R
n, dimγ = n− 1, is a fixed smooth hypersurface in thex-space, and

u0 = u0(x) is a given smooth function defined onγ.

In order to solve the Cauchy problem (2.1), (2.5) for a linear homogeneous equa-
tion, it is sufficient to continue the functionu(x) from the surfaceγ along the character-
isticsx(t) by a constant. In the case of the problem (2.3), (2.5) for the inhomogeneous
equation, the initial data should be extrapolated according to the law (2.4).

Note two important features of the Cauchy problem, specified above.

Figure 2. Example of a characteristic point.

Remark 2.4.The Cauchy problem is set locally (i.e., in a neighbourhood of a pointx0

onγ). Otherwise, as it can be seen in Figure 2, characteristics passing through a given
pointx may crossγ twice (or even several times), carrying different values ofu to this
point. Thus the solution to the problem (2.1), (2.5) exists only for speciallyselected
initial datau0.

Moreover, it can happen that the set of all the characteristics which have common
points with the initial surfaceγ do not cover the whole domain where we want to solve
the Cauchy problem. In this case, we have no uniqueness of a solution to the Cauchy
problem.



The Kruzhkov lectures 7

Remark 2.5.If in the pointx0 ∈ γ the vectorv(x0) is parallel to the surfaceγ (such
pointsx0 are calledcharacteristic points, see Figure 2), then, even choosing a very
small neighbourhood of this point, we cannot guarantee that we shall not have the same
difficulties as we mentioned in Remark 2.4. Hence, the existence and the uniqueness
of a solution to a Cauchy problem can be guaranteed only in a neighbourhood of a
non-characteristic point onγ.

Linear first-order PDEs can be impossible to solve in a neighbourhood ofa charac-
teristic point even in the case when each characteristic has exactly one point of inter-
section with the initial surfaceγ.

Example 2.6.Consider the following Cauchy problem:

∂u

∂x
= 0, u

∣

∣

y=x3 = x2. (2.6)

The characteristic vector field is the constant field(1,0), the characteristics are the
straight linesy = C; each of them has only one intersection point with the curve
γ = {(x, y) | y = x3}. If we extend the initial functionu0(x) = x2 (which is equal to
y2/3 onγ) so that it is constant along the characteristics, we get thex-independent “so-
lution” u(x, y) = y2/3 which is not a classical solution because it is not a continuously
differentiable function on the liney = 0.

The possible objection that, nevertheless, the function constructed abovehas a par-
tial derivative with respect tox (and hence satisfies the equation in the classical sense)
is easy to remove. It is sufficient to change the variables in problem (2.6) according to
the formulax = x′ + y′, y = x′ − y′. After this rotation and rescaling on the axes, we
obtain the following Cauchy problem:

∂u

∂x′
+
∂u

∂y′
= 0, u

∣

∣

γ
= (x′ + y′)

2
,

the curveγ being defined by the equationx′ − y′ = (x′ + y′)3. The transformed
“solution” u(x′, y′) = (x′ − y′)

2/3 has no partial derivatives inx′ nor in y′ on the line
x′ − y′ = 0.

2.3 Quasilinear equations

Definition 2.7.The equation

Lv(x,u)[u] ≡ v1(x, u)
∂u

∂x1
+ · · · + vn(x, u)

∂u

∂xn
= f(x, u) (2.7)

is called aquasilinearfirst-order PDE. If in the equation (2.7) all the coefficientsvi are
independent ofu, i.e.,vi = vi(x), then the PDE is calledsemilinear.

As for the linear equation, we write down the system (2.2), (2.4):


















ẋ1 = v1(x1, . . . , xn, u),

· · ·

ẋn = vn(x1, . . . , xn, u),

u̇ = f(x1, . . . , xn, u).

(2.8)
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This system is called thecharacteristic system of the quasilinear equation(2.7); solu-
tions(x, u) = (x(t), u(t)) ∈ R

n+1 to the system (2.8) are calledcharacteristicsof this
equation; acharacteristic vector field of a quasilinear equation(2.7) is a smooth vec-
tor field with components(v1(x, u), . . . , vn(x, u), f(x, u)) in the(n + 1)-dimensional
space with coordinates(x1, . . . , xn, u).

Remark 2.8.If a linear equation is considered as being quasilinear, and also in the
case of a semilinear equation, the projection(v1, . . . , vn) on thex-space of the vector
(v1, . . . , vn, f) in the point(x0, u0) does not depend onu0, since the coefficientsvi

do not depend onu. Hence in these cases the projections on thex-space of the cha-
racteristics that lie at “different heights” coincide (here we mean that thevertical axis
represents the variableu).

If the smooth hypersurfaceM ⊂ R
n+1 is the graph of a functionu = u(x), then

the normal vector to this surface in the coordinates(x, u) has the form(∇xu,−1) =
(∂u/∂x1, . . . , ∂u/∂xn,−1). Therefore, geometrically, the equation (2.7) expresses the
orthogonality of the characteristic vector(v(x, u), f(x, u)) and the normal vector toM .
Thus, we have the following theorem.

Theorem 2.9.A smooth functionu = u(x) is a solution to the equation(2.7) if and
only if the graphM = {(x, u(x))}, which is a hypersurface in the spaceR

n+1, is tan-
gent, in all its points, to the characteristic vector field(v1, . . . , vn, f).

Corollary 2.10. The graph of any solutionu = u(x) to the equation(2.7) is spanned
by characteristics.

Indeed, by definition, the characteristics(x(t), u(t)) are tangent to the characteristic
vector field(see(2.8)); therefore any characteristics having a point in common with
the graph ofu lies entirely on this graph. (Here and in the sequel, we always assume
that the characteristic system complies with the assumptions of the standard existence
and uniqueness theorems of the theory of ODEs.)

For the case of a quasilinear equation, the Cauchy problem (2.7), (2.5) can be solved
geometrically as follows. Let

Γ = {(x, u0(x)) | x ∈ γ} ⊂ R
n+1, dimΓ = n− 1,

be the graph of the initial functionu0 = u0(x). Issuing a characteristic from each point
of Γ, we obtain some surfaceM of codimension one. Below we show that, whenever
the point(x0, u0(x0)) is non-characteristic, at least locally (in some neighbourhood of
the point(x0, u0(x0)) ∈ Γ) the hypersurfaceM represents the graph of the unknown
solutionu = u(x).

Definition 2.11.A point (x0, u0) ∈ Γ is calleda characteristic point, if the vector
v(x0, u0) is tangent toγ at this point.

Remark 2.12.In the case of a quasilinear equation, one does not ask whether a point
x0 ∈ γ ⊂ R

n is a characteristic point. Indeed, the characteristic vector field also
depends onu. In this case, one should ask whether a point(x0, u0(x0)) ∈ Γ ⊂ R

n+1 is
a characteristic point.
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If (x0, u0(x0)) ∈ Γ is a non-characteristic point, then the hyperplaneT tangent to
M at this point projects isomorphically onto thex-space. Indeed, the hyperplaneT is
spanned by the directions tangent toΓ (their projections span the hyperplane inR

n tan-
gent toγ) and by the characteristic vector(v(x0, u0(x0)), f(x0, u0(x0))) (its projection
is the vectorv(x0, u0(x0)) transversal toγ). Consequently, locally in a neighbourhood
of the point(x0, u0(x0)) ∈ Γ, the hypersurfaceM constructed above represents the
graph of a smooth functionu = u(x), which is the desired solution.

3 Classical (smooth) solutions of the Cauchy problem and
formation of singularities

3.1 Quasilinear equations with one space variable

In the sequel, we will always consider the following equation in the unknownfunc-
tion u = u(t, x) depending on two variables (t has the meaning of time, andx ∈ R

1

represents the one-dimensional space coordinate):

ut + (f(u))x ≡ ut + f ′(u)ux = 0. (3.1)

Heref ∈ C2 is a given function, which will be called theflux function. The initial data
is prescribed at timet = 0:

u
∣

∣

t=0
= u(0, x) = u0(x). (3.2)

In this section, we investigate the possibility to construct solutions of the problem
(3.1)–(3.2) within the class of smooth functions defined in the strip

ΠT ≡ {(t, x) | −∞ < x < +∞, 0< t < T} .

Let us apply the results of the general theory, as exposed above, to thisconcrete case.
We see that the equation (3.1) is quasilinear; for this case, the characteristic sys-

tem (2.8) takes the form










ṫ = 1,
ẋ = f ′(u),

u̇ = 0.

(3.3)

The first equation in system (3.3) together with the initial conditiont(0) = 0 (we
take this condition because of (3.2)) means exactly the following: the independent
variable in system (3.3) (the differentiation with respect to this variable is denoted by
a dot (̇ )) coincides with the time variablet of the equation (3.1). Thus it is natural
to exclude the first equation from the characteristic system (3.3) associated with the
Cauchy problem (3.1)–(3.2).

In the case considered, the initial curveγ ∈ R
2
t,x is the straight linet = 0, i.e.,

γ = {(t, x) | t = 0}, and the curveΓ ∈ R
3
t,x,u is the set of points

Γ = {(t, x, u) | t = 0, x = y, u = u0(y)},
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parameterized by the space variabley. Let us stress that in this case, all the points ofΓ
are non-characteristic, since the vector(ṫ, ẋ) = (1, f ′(u)) is transversal toγ = {t = 0}.

Thus in our case, we can rewrite the characteristic system (3.3) (with the initial data
corresponding to (3.2)) in the form

{

ẋ = f ′(u), x(0) = y,

u̇ = 0, u(0) = u0(y).
(3.4)

Solutions of this system (i.e., the characteristics of equation (3.1)) are the straight lines

u ≡ u0(y), x = y + f ′(u0(y))t (3.5)

in the three-dimensional space of points(t, x, u).
As was pointed out in Section 2.3, the graph of the solutionu = u(t, x) of prob-

lem (3.1)–(3.2) is the union of the characteristics issued from the points of the initial
curveΓ; thus, the graph ofu consists of the straight lines (3.5). Therefore, the solution
of problem (3.1)–(3.2) at different time instantst > 0 (i.e., the sections of the graph
of the solutionu = u(t, x) of this problem by different hyperplanest = const) can be
constructed as follows. The graph of the initial functionu = u0(x) should be trans-
formed by displacing each point(x, u) of this graph horizontally (i.e., in the direction
of thex-axis) with the speedf ′(u). If f ′(u) = 0 then the point(x, u) does not move.
If f ′(u) > 0, then the point moves to the right; and, the greaterf ′(u) is, the quicker it
moves. Similarly, in the casef ′(u) < 0, the point(x, u) moves to the left (see Fig. 3).

Figure 3. Evolution from initial graph.

Remark 3.1.Assume that the graph of the initial functionu0 = u0(x) delimits a finite
area (this is the case, for instance, whenu0 has finite support). Then the aforementioned
transformation of the graph leaves the area invariant. Indeed, all the points of the graph
of u0 lying on the same horizonal line move with the same speed; consequently, the
lengths of the horizontal segments joining the points of the graph remain unchanged.

The fact that the area under the graph remains constant can also be obtained by
a direct calculation. LetS(t) =

∫ +∞

−∞
u(t, x) dx be the area in question, i.e., the area
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delimited by the graph ofu = u(t, x) of problem (3.1)–(3.2) (heret > 0 is fixed). Then

d

dt
S(t) =

∫ +∞

−∞

ut(t, x) dx = −

∫ +∞

−∞

(f(u(t, x)))x dx = −f (u(t, x))
∣

∣

∣

x=+∞

x=−∞

= f(0) − f(0) = 0,

which means thatS(t) ≡ const.

While the graph of the solution evolves as described above, at a certain moment
T > 0 it may happen that the transformed curve ceases to represent the graph of a
smooth functionu(T, x) of variablex.

Consider, for instance, the Hopf equation, i.e., the equation (3.1) withf(u) = u2/2.
This equation describes the evolution of the velocity field of a medium consisting of
non-interacting particles (see Section 1). Each particle moves in absenceof forces and
thus conserves its initial speed.

Consider two particles located, at the initial instantt = 0, at pointsx1 andx2 with
x1 < x2. If the initial velocity distributionu0 = u0(x) is a monotone non-decreasing
function, then the initial velocityu0(x1) of the first particle (which is its velocity for all
subsequent instants of time) is less than or equal to the velocityu0(x2) of the second
particle:u0(x1) 6 u0(x2). Since also the initial locations of the two particles obey the
inequalityx1 < x2, at any time instantt > 0 the two particles will never occupy the
same space location; i.e., no particle collision happens in this case.

On the contrary, if the initial velocity distributionu0 = u0(x) is not a monotone
non-decreasing function, then the quicker particles will overtake the slower ones (or,
possibly, particles can move towards each other), and at some instantT > 0 collisions
should occur. Starting from this time instantT , our model does not reflect the physical
reality any more, because the particles “passing through each other” should interact
(collide) in one way or another. Mathematically, such interaction is usually accounted
for by adding a term of the formεuxx onto the right-hand side of equation (3.1), where
ε > 0 has the meaning of a viscosity coefficient. We will encounter this model in
Section 5.2.

Exercise 3.1.For the Hopf equation, represent approximatively the velocity distribu-
tion u = u(t, x) at different time instantst > 0, if the initial velocity distribution is
given by the function

(i) u0(x) = arctanx,

(ii) u0(x) = −arctanx,

(iii) u0(x) = sinx,

(iv) u0(x) = − sinx,

(v) u0(x) = x3,

(vi) u0(x) = −x3.
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For the initial data prescribed above, find the maximal time instantT > 0 such that a
smooth solution of the Cauchy problem (for the Hopf equation)

ut + uux = 0, u
∣

∣

t=0
= u0(x),

exists in the stripΠT = {(t, x) | 0< t < T, x ∈ R}.

Exercise 3.2.Represent approximatively the sections of the graph of the solution of the
Cauchy problem

ut + (f(u))x = 0, u
∣

∣

t=0
= u0(x),

at different time instantst > 0 for

(i) f(u) = cosu, u0(x) = x,

(ii) f(u) = cosu, u0(x) = sinx,

(iii) f(u) = u3/3, u0(x) = sinx.

3.2 Reduction of the Cauchy problem to an implicit functional equation

One can solve the Cauchy problem for the quasilinear equation (3.1) directly, making
no reference to the local theory of first-order quasilinear PDEs exposed above. This is
the goal of the present section.

Assume that we already have a smooth solutionu = u(t, x) of the problem (3.1)–
(3.2) under consideration.

Proposition 3.2.The functionu = u(t, x) is constant along the integral curves of the
ordinary differential equation

dx

dt
= f ′ (u(t, x)) . (3.6)

Proof. Differentiate the functionu = u(t, x) in the direction of the integral curves
(t, x(t)) of equation (3.6):

du

dt
=
∂u

∂t
+
∂u

∂x
·
dx

dt
= ut + ux · f ′ (u) = ut + (f(u))x = 0.

As u remains constant along these integral curves, it follows that the solutionsof
(3.6) are the linear functionsx = f ′(u)t+C1. (The straight linesx−f ′(u)t = C1, lying
in the hyperplanesu = C2, are exactly the characteristics of the quasilinear equation
(3.1).)

Consequently, the valueu(t0, x0) of the solutionu = u(t, x) at the point(t0, x0) is
conserved along the whole line

x− f ′ (u(t0, x0)) · t = C = x0 − f ′ (u(t0, x0)) · t0. (3.7)

Extending this line until it intersects thex-axis at some point(0, y0), we take the value
u0(y0) at this point. Since the point(0, y0) lies on the straight line (3.7), we have
y0 = x0 − f ′ (u(t0, x0)) · t0. Thus,

u(t0, x0) = u0(y0) = u0 (x0 − f ′ (u(t0, x0)) · t0) .
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As the point(t0, x0) is arbitrary, we obtain the following identity for the solutionu of
the Cauchy problem (3.1)–(3.2):

u = u0 (x− f ′(u)t) . (3.8)

Thus, the problem of finding the domain into which the solutionu = u(t, x) of
(3.1)–(3.2) can be extended amounts to finding the domain where equation (3.8) with
the unknownu has one and only one solution.

Remark 3.3.Formula (3.8) can also be obtained while solving practically the Cauchy
problem for the quasilinear equation, according to [17, §20]. The characteristic system

dt

1
=

dx

f ′(u)
=
du

0

associated with the equation (3.1) possesses two first integrals:

I1(t, x, u) ≡ u, I2(t, x, u) ≡ x− f ′(u)t. (3.9)

On the initial curveΓ = {(0, y, u0(y))} ∈ R
3
t,x,u, these two first integrals take the

values

I1
∣

∣

Γ = u0(y), I2
∣

∣

Γ = y.

Consequently,I1 andI2 are linked onΓ by the relation

I1 = u0(I2). (3.10)

The first integrals remain constant on the characteristics (i.e., on the integral curves
of the characteristic system). Thus, relation (3.10) remains valid on all characteristics
issued from the surfaceΓ. It remains to notice that, upon substituting (3.9) into (3.10),
we get exactly the equation (3.8).

On the other hand, the Cauchy problem (3.1)–(3.2) can be solved by extending the
solutionu = u(t, x) from the initial point(0, y) by the constant value (the valueu0(y)
of the solution at this initial point) along the line

x− f ′ (u0(y)) · t = C = y − f ′ (u0(y)) · 0 = y, (3.11)

that is, by settingu(t, x) = u0(y) for all x andt which satisfy (3.11). Expressing the
variabley in equation (3.11) throughx and t, we get a functiony = y(t, x); conse-
quently,

u(t, x) = u0 (y(t, x)) . (3.12)

In this case, extending the solution is reduced to the problem of finding the domain in
which equation (3.11), withy for the unknown, can be solved in a unique way.
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3.3 Condition for existence of a smooth solution in a strip

Let us find the maximal value among all time instantsT > 0 for which equation (3.8)
determines a smooth solutionu = u(t, x) in the stripΠT . In fact, we have to determine
the greatest possible value ofT such that the equation

Φ(t, x, u) ≡ u− u0(x− f ′(u)t) = 0, (3.13)

with unknownu, has a unique solution for all fixedt in the interval[0, T ) and all
x ∈ R. For t = 0, the functionΦ = Φ(0, x, u) is monotone increasing inu. Thus, by
the implicit function theorem the time instantT in question is restricted by the relation

Φu(u, x, t) = 1 + u′0(x− f ′(u)t) · f ′′(u) · t > 0 (3.14)

for all points(t, x, u) such thatΦ(t, x, u) = 0 andt ∈ [0, T ).
If |f ′′(u)| 6 L on the range of the functionu0 = u0(x), and if, in addition,|u′0| 6

K, then (3.14) is certainly satisfied whenever 1−KL · t > 0. Therefore, there exists a
smooth solution of problem (3.1)–(3.2) in the strip

0< t <
1
KL

.

Problem 3.1.Show that if the functionsu′0 andf ′′ keep constant signs(i.e., the func-
tion u0 is monotone, and the functionf is either convex or concave) and if the two
signs coincide, then a smooth solutionu = u(t, x) exists in the whole half-spacet > 0.

Starting from inequality (3.14), we can also obtain the exact value of the maximal
time instantT which delimits the time interval of existence of a smooth solution. To do
this, denotey = x − f ′(u)t and notice thatu = u0(y) because of (3.13). Then (3.14)
is rewritten as

1 + u′0(y) · f
′′(u0(y)) · t > 0.

Hence,

T =
1

− inf
y∈R

[u′0(y)f
′′(u0(y))]

=
1

− inf
y∈R

[

d
dyf

′(u0(y))
] (3.15)

if only the above infimum is negative. Otherwise, if infy∈R [u′0(y)f
′′(u0(y))] > 0, then

T = +∞ (see Problem 3.1).

Problem 3.2.Check that a functionu = u(t, x), which is smooth in a stripΠT and
which satisfies(3.8), is a solution of the Cauchy problem(3.1)–(3.2).

Problem 3.3.Show that the functionu = u(t, x) given by(3.12), wherey = y(t, x) is
a smooth function inΠT such that(3.11) holds, is a solution to the Cauchy problem
(3.1)–(3.2).

Problem 3.4.Show that the formulas(3.8) and(3.12) define the same solution of the
Cauchy problem(3.1)–(3.2).
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Problem 3.5.Show that, wheneverinfy∈R [u′0(y)f
′′(u0(y))] = −∞, there is no strip

ΠT = {(t, x) | 0< t < T, x ∈ R}, T > 0, such that a smooth solution to problem
(3.1)–(3.2)exists.

Exercise 3.3.Find the maximal valueT > 0 for which there exists a smooth solution
to the Cauchy problem

ut + f ′(u)ux = 0, u
∣

∣

t=0
= u0(x), (3.16)

in the stripΠT = {(t, x) | 0< t < T, x ∈ R}, for

(i) f(u) = u2/2, u0(x) = arctanx,

(ii) f(u) = u2/2, u0(x) = −arctanx,

(iii) f(u) = cosu, u0(x) = x,

(iv) f(u) = cosu, u0(x) = sinx,

(v) f(u) = u3/3, u0(x) = sinx.

Exercise 3.4.Which of the Cauchy problems of the form(3.16), with the data pre-
scribed below, admit a smooth solutionu = u(t, x) in the whole half-spacet > 0, and,
in contrast, which of them do not possess a smooth solution in any stripΠT , T > 0:

(i) f(u) = u2/2, u0(x) = x3,

(ii) f(u) = u2/2, u0(x) = −x3,

(iii) f(u) = u4, u0(x) = x,

(iv) f(u) = u4, u0(x) = −x ?

3.4 Formation of singularities

To fix the ideas, consider the following Cauchy problem for the Hopf equation (1.1),
i.e., for the equation of the form (3.1) withf(u) = u2/2:

ut + uux = 0, u
∣

∣

t=0
= u0(x), (3.17)

the initial datumu0 being the smooth function given by

u0(x) =































2 for x 6 −3,
ψ1(x) for − 3< x < −1,

−x for − 1 6 x 6 1,
ψ2(x) for 1< x < 3,

−2 for x > 3

(see Fig. 4a). Here the functionsψ1 andψ2 connect, in a smooth way, the two constant
values taken byu0 as|x| > 3 with the linear function representingu0 as|x| 6 1. While
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Figure 4. Formation of a strong discontinuity.

doing this, we can chooseψ1 andψ2 in such a way that−1 < ψ′
i(x) 6 0, i = 1,2, as

1< |x| < 3.
As we have|u′0| 6 1 andf ′′ = 1, the results of the previous section imply the

existence of a unique smooth solutionu = u(t, x) to problem (3.17) in the strip 0<
t < 1. As was shown in Section 3.2, in order to construct this solution one has toissue
the straight line (see (3.11))

x− u0(y) · t = y, (3.18)

starting at every point(t, x) = (0, y) of the linet = 0, and one has to assignu(t, x) =
u0(y) at all the points(t, x) of this line.

For y 6 −3 (for y > 3, respectively) the equation (3.18) determines (see Fig. 4b)
the family of parallel straight linesx = 2t+ y (or x = −2t+ y, respectively). Conse-
quently,

u(t, x) = 2 for 0 6 t 6 1, x 6 2t− 3,

u(t, x) = −2 for 0 6 t 6 1, x 6 3− 2t.

Further, for|y| 6 1 the corresponding straight lines are given byx + yt = y, i.e., by
x = y(1− t); on these lines,u = −y = −x/(1− t). This means that

u(t, x) = −x/(1− t) for 0 6 t < 1, |x| 6 1− t.
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On the set 06 t 6 1, 1− t < |x| < 3− 2t, we cannot write down an explicit formula
for u = u(t, x) without defining explicitly the functionsψi. Nevertheless, we can
guarantee that the straight lines of the form (3.18), corresponding to different values
of y from the set(−3,−1) ∪ (1,3), do not intersect inside the strip 06 t 6 1 because
|ψ′

i| < 1 on this set.
For t = 1, through each point(t, x) = (1, x) with x 6= 0 there passes one and only

one straight line (3.18), corresponding to some valuey with |y| > 1 (see Fig. 4b). Such
a line carries the valueu = u0(y) for the solution at the point(1, x). Moreover, if
x → −0, then the corresponding value ofy tends to−1; and ifx → +0, theny → 1.
Consequently, at the time instantt = 1, we obtain a functionx 7→ u(1, x) which is
smooth forx < 0 and forx > 0, according to the implicit function theorem. As has
been pointed out,

lim
x→±0

u(1, x) = lim
y→±1

u0(y) = ∓1.

As to the point(1,0), different characteristics bring different values ofu to this point.
More precisely, all the lines of the form (3.18) with|y| 6 1 (i.e., the linesx = y(1−t) )
pass through this point; each line carries the corresponding valueu = −y, so that all
the values contained within the segment[−1,1] are brought to the point(1,0).

The graph of the functionu = u(1, x) is depicted in Fig. 4c.
To summarize, starting from a smooth functionu(0, x) = u0(x) at the initial instant

of time t = 0, at timet = 1 we obtain the functionx 7→ u(1, x) which turns out to be
discontinuous at the pointx = 0. This kind of discontinuity, whereu(t0, x0 + 0) 6=
u(t0, x0 − 0), is called a strong one. Consequently, we can say that the solution of
problem (3.17) forms astrong discontinuityat the timet0 = 1 at the pointx0 = 0.

For the general problem (3.1)–(3.2), whenever infy∈R [u′0(y)f
′′(u0(y))] is negative

and it is attained on a non-trivial segment[y−, y+], strong discontinuity occurs at the
time instantT given by (3.15). In this situation, like in the example just analyzed, all
the straight lines (3.11) corresponding toy ∈ [y−, y+] intersect at some point(T, x0);
they bring different values ofu to this point.

Problem 3.6.Show that if

u′0(y)f
′′(u0(y)) = I ∀y ∈ [y−, y+], where I = inf

y∈R

[u′0(y)f
′′(u0(y))] , I < 0,

then the family of straight lines(3.11) corresponding toy ∈ [y−, y+] crosses at one
point.

Instead of a strong discontinuity, a so-calledweak discontinuitymay occur in a
solutionu = u(t, x) at the time instantT . This term simply means that the function
x 7→ u(T, x) is continuous inx, but fails to be differentiable inx.

Problem 3.7.Let the infimumI = infy∈R [u′0(y)f
′′(u0(y))] be a negative minimum,

attained at a single pointy0. LetT be given by(3.15). Show that in this situation, the
solutionu = u(t, x), which is smooth fort < T , has a weak discontinuity at the point
(T, y0 + f ′(u0(y0))T ); in addition, for eacht > T some of the lines given by(3.11)
cross.
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4 Generalized solutions of quasilinear equations

As has been shown in the previous section, whatever the smoothness of the initial data
is, classical solutions of first-order quasilinear PDEs can develop singularities as time
grows. Furthermore, in applications one often encounters problems withdiscontinuous
initial data. The nature of the equations we consider (here, the role of the characteristics
is important, because they “carry” the information from the initial datum) is such that
we cannot expect that the initial singularities smooth out automatically fort > 0.
Therefore, it is necessary to extend the notion of a classical solution by considering so-
called generalized solutions, i.e., solutions lying in classes of functions which contain
functions with discontinuities.

4.1 The notion of generalized solution

There exists a general approach leading to a notion of generalized solution; it has
its origin in the theory of distributions. In this approach, the pointwise differential
equation is replaced by an appropriate family of integral identities. When restricted
to classical (i.e., sufficiently smooth) solutions, these identities are equivalent to the
original differential equation. However the integral identities make sensefor a much
wider class of functions. A function satisfying such integral identities is often called a
generalized solution.3

The approach we will now develop exploits the Green-Gauss formula.

Theorem 4.1(The Green–Gauss (Ostrogradskiı̆–Gauss) formula).LetΩ be a bounded
domain ofRn with smooth boundary∂Ω andw ∈ C1(Ω). Then

∫

Ω

∂w

∂xi
dx =

∫

∂Ω
w cos(ν, xi) dSx.

Herecos(ν, xi) is thei-th component of the outward unit normal vectorν (this is the
cosine of the angle formed by the direction of the outward normal vector to∂Ω and
the direction of thei-th coordinate axisOxi); anddSx is the infinitesimal area element
on∂Ω.

Let us apply Theorem 4.1 to the functionw = uv, u, v ∈ C1(Ω). Passing one of
the terms from the left-hand to the right-hand side, we get the following corollary.

Corollary 4.2 (Integration-by-parts formula).For anyu, v ∈ C1(Ω),
∫

Ω
v
∂u

∂xi
dx =

∫

∂Ω
uv cos(ν, xi) dSx −

∫

Ω
u
∂v

∂xi
dx. (4.1)

The first term in the right-hand side of(4.1) is analogous to the non-integral term
which appears in the well-known one-dimensional integration-by-parts formula.

3NT — In the literature, these solutions are most usually called “weak” solutions. In the present lectures,
the authors have kept the terminology and the approach of S. N.Kruzhkov, designed in order to facilitate the
assimilation of the idea of a weak (generalized) solution, and to stress, throughout all the lectures, the distinction
and the connections between the classical solutions and thegeneralized ones.
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Assume that a functionu = u(t, x) ∈ C1(Ω) is a classical solution of the equation

ut + (f(u))x = 0, (4.2)

f ∈ C1(R), in some domainΩ ⊂ R
2, e.g., in the stripΩ = ΠT := {−∞ < x <

+∞, 0< t < T}. This means that substitutingu(t, x) into equation (4.2), we obtain a
correct identity for all points(t, x) ∈ Ω. Let us multiply this equation by a compactly
supported infinitely differentiable functionϕ = ϕ(t, x). Saying thatϕ is compactly
supported means thatϕ = 0 outside of some bounded domainG such that, in addition,
G ⊂ Ω. (The space of all compactly supported infinitely differentiable functionson Ω
is denoted byC∞

0 (Ω).) Since the functionsu = u(t, x), f = f(u(t, x)), ϕ = ϕ(t, x)
are smooth, we can use the integration-by-parts formula (4.1):

0 =

∫

Ω
[ut + (f(u))x]ϕ dtdx =

∫

G

utϕ dtdx+

∫

G

(f(u))xϕ dtdx

=

∫

∂G

(u cos(ν, t) + f(u) cos(ν, x))ϕ dS −

∫

G

(uϕt + f(u)ϕx) dtdx

= −

∫

Ω
(uϕt + f(u)ϕx) dtdx.

Here we took advantage of the fact thatϕ(t, x) = 0 for (t, x) ∈ Ω \G, which is the
case, in particular, for(t, x) ∈ ∂G.

Consequently, we have obtained the following assertion: ifu = u(t, x) is a smooth
solution of equation (4.2) in the domainΩ, then

∫

Ω
(uϕt + f(u)ϕx) dtdx = 0 ∀ϕ ∈ C∞

0 (Ω). (4.3)

The relation (4.3) is taken for the definition of a generalized solution (sometimes called
a solution in the sense of integral identity or distributional solution) of the equation
(4.2). A generalized solution of the equation we consider need not to be smooth. But
any classical solutionu = u(t, x) of equation (4.2) is also its generalized solution.

The converse fact is also easy to establish: if a functionu = u(t, x) is a generalized
solution of equation (4.2) which turns out to be smooth (i.e.,u belongs toC1(Ω) and
it satisfies (4.3)), then it is also a classical solution of this equation (i.e, substituting
it into equation (4.2) yields a correct equality). Indeed, the calculations above remain
true when carried out in the reversed order. Moreover, the fact thatthe continuous
function[ut + (f(u))x] satisfies

∫

Ω
[ut + (f(u))x]ϕ dtdx = 0 ∀ϕ ∈ C∞

0 (Ω)

implies thatut(t, x) + [f(u(t, x))]x = 0 for all (t, x) ∈ Ω.

Problem 4.1.Justify the latter assertion rigorously.
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4.2 The Rankine–Hugoniot condition

Consider a smooth functionu = u(t, x) in a domainΩ ⊂ R
2
t,x, and associate to this

function the vector field~v = (u, f(u)) defined on the same domain. The functionu
is a classical solution of the equation (4.2) if and only if div~v = 0; in turn, the latter
condition means that the flux of the vector field~v through the boundary of any domain
G ⊂ Ω equals zero:

∫

∂G

(~v, ν) dS = 0 ∀G ⊂ Ω. (4.4)

Hereν is the outward unit normal vector to∂G, and(~v, ν) denotes the scalar product
of the vectors~v andν. The identity (4.4) is calleda conservation law.

Now assume we have a piecewise smooth functionu = u(t, x) that satisfies equa-
tion (4.2) in a neighbourhood of each of its smoothness points. In this case, the conser-
vation law (4.4) need not hold in general (the flux of~v may be non-zero, if the domain
G contains a curve across whichu = u(t, x) is discontinuous). We now show that,
nevertheless, for any piecewise smooth generalized solution of equation(4.2) (solution
in the sense of the integral identity (4.3)), this important physical law doeshold. In a
sense, the essential feature of the differential equation (4.2) is to express the law (4.4);
and this feature is “inherited” by the generalized formulation (4.3).

The proof amounts to the fact that, on every discontinuity curve, a generalized
solution satisfies the so-called Rankine–Hugoniot condition. For a piecewise smooth
functionu = u(t, x) that satisfies equation (4.2) in a neighbourhood of each point of
smoothness, this condition is necessary and sufficient foru to be a generalized solution
in the sense of the integral identity (4.3). The present section is devoted tothe deduction
of the aforementioned Rankine–Hugoniot condition.

Let u = u(t, x) be a piecewise smooth generalized solution of equation (4.2) in the
domainΩ ⊂ R

2, i.e., a solution in the sense of the integral identity (4.3). To be specific,
let us assume thatΩ is divided into two partsΩ− andΩ+, separated by some curveΓ
(see Fig. 5); we further assume that in each of these two parts, the function u = u(t, x)
is smooth, i.e.,u ∈ C1(Ω−)∩C1(Ω+), and that there exist one-sided limitsu− andu+

of the functionu as one approachesΓ from the side ofΩ− and from the side ofΩ+,
respectively.

Consequently, at each point(t0, x0) ∈ Γ of the discontinuity curveΓ, one can define

u−(t0, x0) = lim
(t,x)→(t0,x0)

(t,x)∈Ω−

u(t, x) and u+(t0, x0) = lim
(t,x)→(t0,x0)

(t,x)∈Ω+

u(t, x).

Such discontinuities are called discontinuities of the first kind, or strong discontinuities,
or jumps.

Notice thatu = u(t, x) is a generalized solution of (4.2) in each of the two sub-
domainsΩ− andΩ+, in view of the fact thatC∞

0 (Ω±) ⊂ C∞
0 (Ω). Moreover, this

function is smooth inΩ− and Ω+. Therefore, according to what has already been
proved, in each of the two subdomains, the functionu = u(t, x) is a classical solu-
tion of equation (4.2). Let us derive the conditions satisfied byu = u(t, x) along the
discontinuity curveΓ.
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Figure 5. Strong discontinuity (jump).

Proposition 4.3.Assume that the curveΓ contained within the domainΩ is represented
by the graph of a smooth functionx = x(t). Then the piecewise smooth generalized
solutionu = u(t, x) of equation(4.2) satisfies the following condition onΓ, calledthe
Rankine–Hugoniot condition:

dx

dt
=

[f(u)]

[u]
=
f(u+) − f(u−)

u+ − u−
, (4.5)

where[u] = u+ − u− is the jump of the functionu on the discontinuity curveΓ, and
[f(u)] = f(u+) − f(u−) is the jump off = f(u).

Taking into account the relationdx/dt = − cos(ν, t)/ cos(ν, x), wherecos(ν, t) and
cos(ν, x) are the components of the unit normal vectorν to the curveΓ = {(t, x(t))}
(the vector is oriented to point fromΩ− to Ω+; notice thatcos(ν, x) 6= 0), the equal-
ity (4.5) can be rewritten in the equivalent form

[u] cos(ν, t) + [f(u)] cos(ν, x) = 0. (4.6)

Definition 4.4.A shock waveis a discontinuous generalized solution of equation(4.2).

Thus we can say that the Rankine–Hugoniot condition (4.5) relates the speedẋ of
propagation of a shock wave with the flux functionf = f(u) and the limit statesu+

andu− of the shock-wave solutionu = u(t, x).

Proof of Proposition 4.3.Let us prove the formula (4.6). By the definition of a general-
ized solution, for any “test” functionϕ ∈ C∞

0 (Ω) such thatϕ(t, x) = 0 for (t, x) /∈ G,
G ⊂ Ω, we have

0 =

∫

Ω
(uϕt + f(u)ϕx) dtdx

=

∫

Ω−∩G

(uϕt + f(u)ϕx) dtdx+

∫

Ω+∩G

(uϕt + f(u)ϕx) dtdx.
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The functionsu = u(t, x), f = f(u(t, x)), andϕ = ϕ(t, x) are smooth in the do-
mainsΩ−∩G andΩ+∩G. Since these domains are bounded, while integrating on these
domains we can transfer derivatives according to the multi-dimensionalintegration-by-
parts formula (4.1). Notice that the boundaries of these domains consist of Γ and of
parts of∂G. The integrals over∂G are equal to zero due to the fact thatϕ(t, x) = 0 for
(t, x) ∈ ∂G. Thus, we have

0 = −

∫

Ω−∩G

(utϕ+ (f(u))xϕ) dtdx+

∫

Γ∩G

(u− cos(ν, t) + f(u−) cos(ν, x))ϕ dS

−

∫

Ω+∩G

(utϕ+ (f(u))xϕ) dtdx+

∫

Γ∩G

(u+ cos(−ν, t) + f(u+) cos(−ν, x))ϕ dS

= −

∫

Ω−

(ut + (f(u))x)ϕ dtdx−

∫

Ω+

(ut + (f(u))x)ϕ dtdx

−

∫

Γ

(

(u+ − u−) cos(ν, t) + (f(u+) − f(u−)) cos(ν, x)
)

ϕ dS.

Here we used the fact thatν is the outward unit normal vector to the partΓ of the
boundary of the domainΩ− ∩G; thus−ν is the outward unit normal vector to the part
Γ of the boundary ofΩ+ ∩ G. As was already mentioned,u = u(t, x) is a classical
solution in both domainsΩ− andΩ+, i.e., equation (4.2) holds for(t, x) ∈ Ω− ∪ Ω+.
Therefore, we have

∫

Γ
([u] cos(ν, t) + [f(u)] cos(ν, x))ϕ dS = 0 ∀ϕ ∈ C∞

0 (Ω). (4.7)

Consequently, the equality (4.6) is satisfied at all points(t, x) ∈ Γ where the dis-
continuity curveΓ is smooth (i.e., at the points(t, x) ∈ Γ where the normal vector
ν = (cos(ν, t), cos(ν, x)) depends continuously on the point ofΓ).

The converse of the statement of the above theorem also holds true. Precisely, let
a functionu = u(t, x) be a classical solution of equation (4.2) in each of the domains
Ω− andΩ+. Assume that the functionu has a discontinuity of the first kind on the
curveΓ separatingΩ− from Ω+ and that the Rankine–Hugoniot condition holds on the
discontinuity curveΓ. Thenu is a generalized solution of equation (4.2) in the domain
Ω = Ω− ∪ Γ ∪ Ω+. Indeed, starting from (4.7) and using the fact that

ut + (f(u))x = 0 for (t, x) ∈ Ω− ∪ Ω+,

we can reverse all the calculations of the above proof. This eventually leads to the
integral identity (4.3), which is the definition of a generalized solution.

Problem 4.2.Justify rigorously the above statement.

Theorem 4.5.Assume thatu = u(t, x) is a piecewise smooth function4 defined in a do-
mainΩ with a finite number of componentsΩ1,Ω2, . . . ,Ωm whereu is smooth, and, ac-

4NT — Throughout the lectures, the term “piecewise smooth” refers exactly to the situation described in
the assumption formulated in the present paragraph. This framework is sufficient to illustrate the key ideas
of generalized solutions. In general, there may exist discontinuous generalized solutions with a much more
complicated structure, but they are far beyond our scope.
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cordingly, with a finite number of curves of discontinuity of the first kindΓ1,Γ2, . . . ,Γk,
so that we have

Ω =

( m
⋃

i=1

Ωi

)

⋃

( k
⋃

i=1

Γi

)

(see Fig.6 which corresponds to the case of a strip domainΩ = ΠT ).
The functionu = u(t, x) is a generalized solution of equation(4.2) in the do-

mainΩ in the sense of the integral identity(4.3) if and only ifu is a classical solution
of this equation in a neighbourhood of each smoothness point ofu (i.e., on each of the
setsΩi, i = 1, . . . ,m) and, moreover, the Rankine–Hugoniot condition(4.6) is satis-
fied on each discontinuity curveΓi, i = 1, . . . , k except for the finite number of points
where some of the curvesΓi intersect one another.

For the proof, it is sufficient to consider the restriction of the functionu to each
discontinuity curveΓi and the two smoothness componentsΩi1, Ωi2 adjacent toΓi;
then we can exploit the assertions already shown in Proposition 4.3 and in Problem 4.2.

Figure 6. Piecewise smooth solution.

Proposition 4.6.Let u = u(t, x) be a piecewise smooth generalized solution of equa-
tion (4.2) in the domainΩ in the sense of the integral identity(4.3). Then the vector
field~v = (u, f(u)) satisfies the conservation law(4.4).

Proof. Assume thatΩi are the components of smoothness ofu. LetG be an arbitrary
subdomain of the domainΩ. For alli, the flux of the vector field~v = (u, f(u)) through
∂ (Ωi ∩G) is equal to zero, becauseu is a classical solution of equation (4.2) in the
subdomainΩi and thus also in the subdomainΩi ∩ G. Therefore, we can represent
zero as the sum of these fluxes over all boundaries∂ (Ωi ∩G). Thanks to the Rankine–
Hugoniot condition (4.6), on each discontinuity curveΓj the total flux (i.e., the sum
of the fluxes from the two sides ofΓj) of the vector field~v across the curveΓj ∩ G is
equal to zero. Consequently, the sum of the fluxes across all the boundaries∂ (Ωi ∩G)
is equal to the flux of the vector field~v through∂G. This proves (4.4).

As has been mentioned in Remark 3.1, the area delimited by the graph of a classical
solutionu = u(t, x) of the problem (3.1)–(3.2) remains constant as a function of time
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t > 0, whenever this area is finite. It turns out that also the generalized solutions obey
this property. Thus the process of formation of a shock wave (a process that can be
visualized as an “overturning” of the graph) occurs in such a way that the part which is
“cut off’ has area equal to the area of the “extra” part (see Fig. 7);this equality of the
two areas is a direct consequence of the Rankine–Hugoniot condition.

Figure 7. Area-preserving “overturning” of the graph.

Proposition 4.7.Assume thatu = u(t, x) is a piecewise smooth function with compact
support inx, such thatx = x(t) is the unique discontinuity curve ofu and such thatu
is a generalized solution of equation(4.2). Denote

S(t) =

∫ +∞

−∞

u(t, x) dx.

Then the functionS = S(t) is independent oft, i.e.,S(t) ≡ const.

Proof. Indeed, we can write

S(t) =

∫ x(t)

−∞

u(t, x) dx+

∫ +∞

x(t)

u(t, x) dx,

wherex = x(t) is the curve of discontinuity of the generalized solutionu = u(t, x). As
previously, we denote byu± = limx→x(t)±0 u(t, x) the one-sided limits (limits along
thex-axis) of the solutionu on the discontinuity curve. Then

dS

dt
= u(t, x(t) − 0) · ẋ(t) +

∫ x(t)

−∞

ut(t, x) dx

− u(t, x(t) + 0) · ẋ(t) +

∫ +∞

x(t)

ut(t, x) dx

= (u− − u+) · ẋ(t) −

∫ x(t)

−∞

(

f(u(t, x))
)

x
dx−

∫ +∞

x(t)

(

f(u(t, x))
)

x
dx

= (u− − u+) · ẋ(t)

− f(u(t, x(t) − 0)) + f(u(t,−∞)) − f(u(t,+∞)) + f(u(t, x(t) + 0))

= (f(u+) − f(u−)) − (u+ − u−) · ẋ(t). (4.8)

In these calculations, in addition to the equation (4.2) itself, we took advantage of the
fact thatu has compact support inx, so thatf(u(t,−∞)) = f(u(t,+∞)) = f(0).
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Now if u+ = u−, then from (4.8) we clearly have

dS

dt
= 0.

In the caseu+ 6= u−, we have the same conclusion thanks to the Rankine–Hugoniot
condition (4.5).

Problem 4.3.Prove the analogous result for the case where a piecewise smooth gener-
alized(in the sense of the integral identity(4.3)) solutionu = u(t, x) of equation(4.2)
has a finite number of discontinuity curvesx = xj(t), j = 1, . . . , N .

Remark 4.8.If a functionu = u(t, x) has a weak discontinuity on the curveΓ, i.e,
u is continuous acrossΓ and only its derivativesut , ux are discontinuous onΓ, then
the Rankine–Hugoniot condition (4.6) is trivially satisfied (indeed,[u] = 0 and, con-
sequently, also[f(u)] = 0). Therefore, a continuous functionu = u(t, x), which
is piecewise smooth in a domainΩ and is a classical solution of equation(4.2) in a
neighbourhood of each smoothness point, is also a generalized solution of (4.2) in the
whole domainΩ (it is clear that the functionu = u(t, x) is not a classical solution in
Ω, since it is not differentiable at the points(t, x) ∈ Γ ⊂ Ω).

Remark 4.9.Formally, passing to the limit in (4.5) asu± → u, we infer that

dx

dt
= f ′(u(t, x)), (4.9)

on a weak discontinuity curveΓ = {(t, x) | x = x(t)} of u = u(t, x); this means that
a weak discontinuity propagates along a characteristic.

Let us provide a rigorous justification of this fact.
Let Γ = {(t, x) | x = x(t)} be a weak discontinuity curve separating two classical

solutionsu = u(t, x) andv = v(t, x) of equation (4.2). Then

u(t, x(t)) ≡ v(t, x(t)). (4.10)

Differentiating (4.10) with respect tot, we obtain

ut(t, x(t)) + ux(t, x(t)) ·
dx

dt
= vt(t, x(t)) + vx(t, x(t)) ·

dx

dt

Here and in the sequel,ux, vx, ut, vt denote the corresponding limits of the deriva-
tives as the point(t, x) tends to the weak discontinuity curveΓ. (The existence of these
limits follows from the definition of a weak discontinuity.) Expressing thet-derivatives
from the equation (4.2), we have

ux(t, x(t)) ·
dx

dt
− f ′(u(t, x(t)))ux = vx(t, x(t)) ·

dx

dt
− f ′(v(t, x(t)))vx.

Hence, taking into account (4.10), we obtain
(

ux(t, x(t)) − vx(t, x(t))
)

(

dx

dt
− f ′(u(t, x(t))

)

= 0.

Since the curvex = x(t) is a weak discontinuity curve, the relationux(t, x) 6= vx(t, x)
holds on this curve; thus (4.9) follows.
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Exercise 4.1.Is it true that the following functionsu = u(t, x) are generalized so-
lutions (in the sense of the integral identity(4.3)) of equation(4.2) in the stripΠT

(remind thatΠT = {−∞ < x < +∞, 0< t < T}), for

(i) f(u) = u2/2, u(t, x) =

{

0 for x < t,

1 for x > t;

(ii) f(u) = u2/2, u(t, x) =

{

0 for x < t,

2 for x > t;

(iii) f(u) = u2/2, u(t, x) =

{

2 for x < t,

0 for x > t;

(iv) f(u) = −u2, u(t, x) =

{

1 for x < 0,
−1 for x > 0;

(v) f(u) = −u2, u(t, x) =

{

−1 for x < 0,
1 for x > 0;

(vi) f(u) = u3, u(t, x) =

{

1 for x < 0,
−1 for x > 0;

(vii) f(u) = u3, u(t, x) =

{

−1 for x < t,

1 for x > t;

(viii) f(u) = u3, u(t, x) =

{

1 for x < t,

−1 for x > t?

Exercise 4.2.Construct some non-trivial generalized solutions in the stripΠT for the
equations

(i) ut − (u3)x = 0,

(ii) ut − u2 · ux = 0,

(iii) ut + sinu · ux = 0,

(iv) ut − (eu)x = 0,

(v) ut + (eu)x = 0,

(vi) ut + ux/u = 0

(by non-trivial, we mean a generalized solution that cannot be identified witha classi-
cal solution upon modifying its values on a set of Lebesgue measure zero).



The Kruzhkov lectures 27

4.3 Example of non-uniqueness of a generalized solution

It turns out that extending the notion of solution of equation (4.2) by replacing this
equation with the integral identity(4.3) (let us stress again that this identity expresses
in a generalized way the conservation law(4.4) for the vector field~v = (u, f(u)) )
may result in non-uniqueness of a generalized solution to a Cauchy problem. In order
to observe this loss of uniqueness of a solution, let us consider equation (4.2) with the
flux functionf(u) = u2 and with the zero initial datum:

ut + 2uux = 0, x ∈ R, 0< t < T, (4.11)

u
∣

∣

t=0
= 0. (4.12)

The functionu(t, x) ≡ 0 is a classical solution, and thus it is also a generalized solution
of the above problem. Nonetheless, we can construct non-zero generalized solutions
of the problem considered. Assign (see Fig. 8)

uδ(t, x) =



















0 for x < −δt,

−δ for − δt < x < 0,
+δ for 0< x < +δt,

0 for x > +δt,

whereδ > 0. (4.13)

Figure 8. One-parameter family of “wrong” solutions.

Formula (4.13) defines the functionuδ = uδ(t, x) with four components of smooth-
ness; on each of these,uδ is a classical solution of equation (4.11) (it is clear that, in
general, any constant satisfies equation (4.2) whatever be the flux function f = f(u)).
Let us check the Rankine–Hugoniot condition on each of the three lines ofdiscontinu-
ity of the first kind (which arex = 0 andx = ±δt):

asx = 0, we haveu− = −δ, u+ = δ, and

dx

dt
= 0 =

δ2 − (−δ)
2

δ − (−δ)
=
f(u+) − f(u−)

u+ − u−
;



28 Gregory A. Chechkin and Andrey Yu. Goritsky

asx = −δt, we haveu− = 0, u+ = −δ, and

dx

dt
= −δ =

(−δ)
2
− 02

(−δ) − 0
=
f(u+) − f(u−)

u+ − u−
;

asx = δt, we haveu− = δ, u+ = 0, and

dx

dt
= δ =

02 − δ2

0− δ
=
f(u+) − f(u−)

u+ − u−
.

Notice that, in the case of piecewise constant solutions, the Rankine–Hugoniot con-
dition has a simple geometrical interpretation. Let us draw the graph of the flux func-
tion f = f(u) respective to the axes(u, f), oriented parallel to the axes(t, x). Next,
mark the points(u−, f(u−)) and(u+, f(u+)) on the graph (see Fig. 9). Then the seg-
ment connecting the two points must be parallel to the discontinuity linex = x(t) = kt.
Indeed, the slope of this segment is equal tof(u+)−f(u−)

u+−u−

, while the slope of the dis-

continuity line equalsdx
dt = k; the equality between the two slopes is exactly what the

Rankine–Hugoniot condition (4.5) expresses.

Figure 9. Geometrical interpretation of the Rankine–Hugoniot condition.

This geometrical point of view facilitates the graphical representation of the gener-
alized solutionsuδ(t, x) of equation (4.11), as constructed above. Marking the points
(0,0), (±δ, δ2) and joining them by segments in the way Fig. 8 shows, we obtain the
slopes of the discontinuity lines inuδ.

Exercise 4.3.Construct a generalized solution of the problem(4.11)–(4.12)which is
piecewise constant and has three discontinuity lines(as in the solutionuδ = uδ(t, x)),
different from any of the solutions(4.13). For the solution constructed, verify analyti-
cally the Rankine–Hugoniot relation on all the discontinuity lines.

Let us point out that it is not possible to construct a piecewise constant generalized
solution of problem (4.11)–(4.12) with exactly two discontinuity lines. Indeed, such a
solution would have two distinct jumps: a jump from the state 0 (on the left fromthe
discontinuity line) to some constant stateδ (on the right), and the jump fromδ (now on
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the left) to 0 (now on the right). According to the Rankine–Hugoniot condition, these
jumps can only occur along straight lines of the formx = f(δ)−f(0)

δ−0 t+C,C ∈ R. Since
the solution also obeys the zero initial datum, the constantC should be the same for
the two jumps. Thus both jumps cancel each other, because they occur along one and
the same line; thus our piecewise constant solution is in fact equal to zero.

Exercise 4.4.Construct piecewise constant generalized solutions of(4.11)–(4.12)with
more than three discontinuity lines.

Exercise 4.5.Is it possible to construct a solution as in the previous exercise but with
an even number of discontinuity lines, each of these lines being a ray originating from
the point(0,0) of the(t, x)-plane ?

In order to construct a non-zero generalized solution of the Cauchy problem

ut + (f(u))x = 0, u
∣

∣

t=0
= 0, (4.14)

with an arbitrarily chosen flux functionf = f(u), it is sufficient to pick two numbers
α andβ, α < 0 < β, in such a way that the points(0, f(0)), (α, f(α)) and(β, f(β))
are not aligned. Then we join these points pairwise by straight line segments, as it was
described above for the casef(u) = u2 (see Fig. 8), and obtain the slopes of the discon-
tinuity rays in the plane(t, x) for the solution to be constructed. Sinceα < 0 < β, the
slope of the segment joining(α, f(α)) with (β, f(β)) is always the intermediate one
among the three slopes. Thus the construction produces a piecewise constant solution
with the zero initial datum and the two intermediate statesα, β.

Exercise 4.6.Justify carefully that the above construction leads to a piecewise con-
stant generalized solution of problem(4.14). Show that if, e.g.,0 < α < β, then the
analogous construction yields a non-trivial generalized solution with the initialdatum
u0(x) ≡ α.

The above construction breaks down in the case where such non-aligned points on
the graph off = f(u) cannot be found. This corresponds exactly to the case of an
affine flux function, i.e.,f(u) = au+ b, a, b ∈ R. In the latter case, our quasilinear
problem is in fact linear:

ut + aux = 0, u|t=0 = u0(x). (4.15)

In the case whereu0 is smooth (this applies, in particular, tou0 ≡ 0), the unique
classical solution of this problem is easily constructed by the method of Section 2; the
solution takes the formu(t, x) = u0(x− at).

Problem 4.4.Show that for any piecewise smooth solution of equationut + aux = 0,
a = const, the curves of discontinuity are the characteristics of the equation, i.e., the
linesx = at + C. Then, prove the uniqueness of a piecewise smooth solution of the
Cauchy problem(4.15)with a piecewise smooth initial datumu0. Precisely, show that
this solution is given by the equalityu(t, x) = u0(x− at).
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It can be shown that this solution is unique not only within the class of classical
solutions, but also within the class of generalized ones; but this is beyond the scope
of these notes. In particular, the zero solution is the unique generalized solution of
problem (4.14) in the case of a linear flux functionf = f(u).

Exercise 4.7.Construct non-trivial generalized solutions of the problem(4.14) with
f(u) = u3, then withf(u) = sinu. Is it possible to construct such solutions with more
than three discontinuity lines ?

It should be understood that, from the physical point of view, all the non-trivial gen-
eralized solutions to the problem (4.11)–(4.12) or to the problem (4.14)are “wrong”;
notwithstanding the fact that these functions satisfy the PDE in the sense of the integral
identity (4.3) and comply with the conservation law(4.4), the only “physically correct”
solution of the above problems should be, unquestionably, the solutionu(t, x) ≡ 0.
Consequently, we should also devise a mathematical condition which would select,
among all the generalized solutions, the unique “correct” solution. This condition,
called the entropy increase condition, will now be formulated.

5 The notion of generalized entropy solution

As exposed in the previous sections, in the study of the Cauchy problem for the equa-
tion

ut + (f(u))x = 0 (5.1)

with the initial data
u
∣

∣

t=0
= u0(x), (5.2)

we encounter the following situation:

1) There exist some bounded smooth (infinitely differentiable) initial datau0 such
that the unique classical solutionu = u(t, x) remains a smooth function up to some
critical instant of timeT , but the limit

u(T, x) = lim
t→T−0

u(t, x)

is only a piecewise smooth function with discontinuities of the first kind. The equa-
tion (5.1) is one of the so-called “hyperbolic” equations, and the smooth solutions of
these equations are determined by the “information” propagated from theinitial man-
ifold along the characteristics. Thus it happens that this “information” itselfleads to
the appearance of discontinuities of the first kind. In this case, it is natural to expect
that the solution remains discontinuous as well on some time interval[T, T + δ]. This
means that, in order to construct a nonlocal theory of the Cauchy problem (5.1)–(5.2),
discontinuous solutions must be introduced into our consideration.

2) One natural approach for introducing such generalized solutions relies on the
ideas of the theory of distributions (this approach was discussed in Section4.1). Even
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in a class as wide as the class of all locally bounded measurable functions inΠT , one
could consider generalized solutionsu = u(t, x) in the sense of the integral identity

∫

ΠT

[uϕt + f(u)ϕx] dx dt = 0, (5.3)

which should hold for all “test” functionsϕ ∈ C∞
0 (ΠT ); the initial datum (5.2) should

be taken, say, “in theL1,loc sense” (see (5.31) in Section 5.5 for the exact definition).
Nonetheless, as we have demonstrated in the previous section, so defined gen-

eralized solutions of the Cauchy problem may fail to be unique (even for the case
u0(x) ≡ 0). It is clear that the non-uniqueness stems from the fact that the “wrong” so-
lutionsuδ, δ 6= 0, have discontinuities. One could guess that not all the discontinuities
are admissible; but how can we find the appropriate restrictions on the discontinuities?

5.1 Admissibility condition on discontinuities: the case of a convex flux
function

Let us make the additional assumption

f ′′ > 0, f ∈ C3(R) , u0 ∈ C2(R).

Problem 5.1.With the help of(3.8) or of (3.12), using Problem3.2 or Problem3.3,
show that in this case,u ∈ C2(ΠT ) where[0, T ) is the maximal interval of existence of
a classical solution.

Now let us exploit the following consideration, which is purely mathematical: we
try to reveal such properties of the smooth (fort < T ) solutions that do not weaken (or
which are conserved) while time approaches the critical valuet = T . Such properties
will therefore characterize the naturally arising singularities of a solutionu. Denote
p = ux(t, x) and differentiate the equation (5.1) inx. We have

0 = pt + f ′(u) · px + f ′′(u) · p2
> pt + f ′(u)px .

Along any characteristicsx = x(t), ẋ = f ′ (u(t, x(t)) (recall that the characteristics fill
the whole domainΠT of existence of a smooth solution), the latter inequality reads as

0 > pt +
dx

dt
px =

dp(t, x(t))

dt
,

that is, the functionp does not increase along the characteristicsx = x(t). Thus,

p(t, x(t)) 6 p(0, x(0)) = ux(0, x(0)) 6 sup
x∈R

u′0(x) =: K0 .

Consequently, at any point(t, x) ∈ ΠT there holds

p(t, x) = ux(t, x) 6 K0 . (5.4)
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As the derivativeux(T, x) is not defined for some values ofx, we pass to the following
equivalent form of the inequality (5.4):

u(t, x2) − u(t, x1)

x2 − x1
6 K0 ∀x1, x2 . (5.5)

A similar inequality was introduced in the works of O. A. Oleı̆nik (see [37]); the
inequality played the role of the admissibility condition in the theory of generalized
solutions. From (5.5) it follows thatu(t, x2) − u(t, x1) 6 K0(x2 − x1) for x1 < x2;
thus at the limit asx2 → x∗ + 0, x1 → x∗ − 0, wherex∗ is a discontinuity point
of u(T, x), we have

u+ = u(t, x∗ + 0) < u(t, x∗ − 0) = u− . (5.6)

(Rigorously speaking, passing to the limit impliesu+ 6 u−, but u+ 6= u− since we
assumed thatx∗ is a discontinuity point.)

Let us require (5.6) to be satisfied at every point of discontinuity of a generalized
solutionu = u(t, x) (the solution is assumed to be piecewise smooth). It is natural to
interpret this condition as anadmissibility conditionon strong discontinuities (jumps)
within the class of piecewise smooth solutions.

Remark 5.1.In the example of non-uniqueness exposed above (see Section 4.3) for
the Cauchy problem (4.11)–(4.12), where we havef ′′(u) = 2 > 0, the solutionsuδ,
δ > 0, of the form (4.13) fail to verify the admissibility condition (5.6) on the discon-
tinuity line x = 0. The unique admissible solution of this problem will be the function
u(t, x) ≡ 0, which is the classical solution of the problem considered.

If f ′′(u) 6 0, then substitutingu = −v into equation (5.1) we obtain the equation
vt + (f̃(v))x = 0, wheref̃(v) ≡ −f(−v); notice thatf̃ ′′(v) = −f ′′(−v) > 0. For the
solutionv = v(t, x) of the above equation, we should havev+ < v−, according to the
admissibility condition (5.6). We conclude that in the casef ′′(u) 6 0, the admissibility
condition is the inequalityu+ = −v+ > −v− = u−, converse to the inequality (5.6).

To summarize, for the case of a convex or a concave flux functionf = f(u), we
have deduced the following condition for admissibility of discontinuities. Letu−, re-
spectivelyu+, be the one-sided limit of a generalized solutionu = u(t, x) as the dis-
continuity curve is approached from the left, respectively from the right,along the
x-axis. Then

• in the case of a convex functionf = f(u) (for instance,f(u) = u2/2, eu, . . .),
generalized solutions of equation (5.1) may have jumps fromu− to u+ only when
u− > u+;

• in the case of a concave functionf = f(u) (f(u) = −u2, lnu, . . .), jumps from
u− to u+ are only possible whenu− < u+.

Let us provide a “physical” explanation of the admissibility condition obtainedfor
the case where the monotonicity off ′ is strict. At any point of an admissible discon-
tinuity curvex = x(t), consider the slopesf ′(u+) andf ′(u−) of the characteristics
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x = f ′(u±)t + C which impinge at this point from the two sides of the discontinu-
ity. Consider also the slopeω = dx

dt = f(u+)−f(u−)
u+−u−

of the discontinuity curve (more
exactly, the slope of its tangent line); notice thatω is equal to the valuef ′(ũ) at some
point ũ which lies strictly betweenu+ andu−. These three slopes satisfy the so-called
Lax admissibility condition

f ′(u+) < ω =
f(u+) − f(u−)

u+ − u−
= f ′(ũ) < f ′(u−). (5.7)

Indeed, iff is strictly convex, thenf ′ is a monotone increasing function, and the admis-
sibility condition for this case of a convex flux functionf ensures thatu+ < ũ < u−.
Similarly, if f is strictly concave, then the admissibility condition yieldsu+ > ũ > u−,
so that we get (5.7) again, sincef ′ is a monotone decreasing function in this case.

Condition (5.7) is a particular case of the admissibility condition which is funda-
mental for the theory of systems of conservation laws. It was first formulated by the
American mathematician P. D. Lax (see [30]).

Therefore, we observe that, ast grows, the characteristics approach the discontinu-
ity curve from both sides (see Fig. 10a); none of the two characteristics can move away
from it (the case where the characteristics move away from the discontinuity curve as
t grows is depicted in Fig. 10b). This means that those discontinuities are admissible
which are due to the fact that characteristics of a smooth solution (smooth from each
side of the discontinuity curve) tend to have intersections ast grows (the intersections
eventually occur on the discontinuity curve). On the contrary, the situation when the
discontinuity curve is “enforced”, with some of the characteristics originating out of
the discontinuity curve as time grows, is not admissible.

Figure 10. Lax condition: admissible and non-admissible discontinuity curves.

Example 5.2.Let us illustrate the above statement with the example of the Hopf equa-
tion (1.1), i.e., the equation (5.1) withf(u) = u2/2. This equation describes the
displacement of freely moving particles (see Section 1). Assume that theparticles
situated, at the initial instant of time, in a neighbourhood of+∞ (i.e., particles with
thex-coordinate larger than some sufficiently large value), move with a velocityu+;
assume that the particles initially located in a neighbourhood of−∞ have a velocity
u−; and letu+ < u−. The latter constraint means that, as time passes, collisions are
inevitable, and eventually, a shock wave will form. The velocity of propagation of this
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shock wave created by particle collisions will be equal to

ω =
f(u+) − f(u−)

u+ − u−
=
u2

+/2− u2
−/2

u+ − u−
=
u+ + u−

2
.

When the initial velocity profile is a monotone non-increasing function, it canbe
justified that for sufficiently larget, we obtain a generalized solution of the Hopf equa-
tion of the following form:

u(t, x) =

{

u− for x < ωt+ C,

u+ for x > ωt+ C.
(5.8)

This solution can be interpreted as follows. The particles with velocitiesu− and
u+ collide when the quicker one (with the velocityu−) overtakes the slower one (of
velocity u+); this collision is not elastic, and the two particles agglomerate into one
single particle. After the collision, the particles continue to move with the velocity
(u+ + u−)/2, creating a shock wave. The velocity of propagation of this wave is
calculated with the help of the law of momentum conservation: this velocity is the
arithmetic mean of the particles’ velocities before the collision. Let us point out that
such collisions induce a lost of the kinetic energy of the particles (we will further
discuss this question later).

If, on the contrary, the speeds of the particles near+∞ and near−∞ were related
by the inequalityu+ > u− and if the initial velocity distribution were a smooth mono-
tone non-decreasing function, then no collision of particles would ever occur: at any
time instantt > 0, the velocity distributionu(t, ·) would be a smooth non-decreasing
function as at the timet = 0, and no shock wave might form (see Section 3.1). There-
fore, in the caseu+ > u−, the functionu given by (5.8), although it does satisfy the
integral identity (5.3), is not a physically correct solution of the Hopf equation.

5.2 The vanishing viscosity method

In order to generalize the admissibility condition of the previous section to the case of
a flux functionf = f(u) which is neither convex nor concave, we make the following
observation and reformulate this condition in the terms of the respective location of the
graph and the chords of convex or concave functions. We see that thejump between
u− andu+ is admissible in the sense of the previous section ifu− > u+ (respectively,
u− < u+) and the graph of the flux functionf is situated under the chord (respectively,
above the chord) joining the points(u−, f(u−)) and(u+, f(u+)) (see Fig. 11).

It turns out that the above reformulation of the admissibility rule for convex/concave
flux functions remains appropriate for the case of an arbitrary flux functionf .

For a rather rigorous justification of this statement, let us use “physical” (more
exactly, “fluid dynamics”) considerations based on the concepts of an ideal gas and
a viscous gas. Ifx = x(t) is the trajectory of a particle of an ideal gas in a tube
aligned with thex-axis, and if the functionu = u(t, x) represents the velocity of the
particle that occupies the space locationx at the time instantt, then (see Section 1)
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Figure 11. Visualization of admissible jumps, I.

ẋ(t) = u (t, x(t)), ẍ(t) = du
dt = 0; this calculation previously led us to the Hopf

equation (1.1). But, ideal gases “do not exist”; they only exist theoretically, as limits
when the viscosity of a real gas is neglected because of its smallness.

If ε > 0 is the viscosity coefficient of a real gas, then (under certain assumptions)
the force of viscous friction which acts on the particlex(t) at timet and relative to the
mass unit can be taken to beεuxx(t, x(t)). Thenẍ = du

dt = εuxx, and instead of the
Hopf equation we obtain the so-called Burgers equation5

ut + uux = εuxx . (5.9)

It is natural to admit that — this is what actually takes place — all admissible gen-
eralized solutions of the Hopf equation can be obtained as the limit of some solutions
uε = uε(t, x) of the equation (5.9) as the viscosity coefficientε tends to 0. The proce-
dure of introducing the termεuxx into a first-order equation and the subsequent study
of the limits of the solutionsuε asε→ +0 is called the“vanishing viscosity” method.

Before we continue with the application of the vanishing viscosity method to a
justification of the general admissibility condition formulated above, let us point out an
important method of “linearization” (in a sense) of the Burgers equation (5.9). Observe
that we haveut = (εux − u2/2)x; thus we can introduce a potentialU = U(t, x),
determined from the equality

dU = u dx+
(

εux − u2/2
)

dt.

In this case
Ux = u, Ut = εux − u2/2 = εUxx − (Ux)2/2,

i.e., the functionU satisfies the equation

Ut +
1
2
(Ux)2 = εUxx . (5.10)

In (5.10), let us make the substitutionU = −2ε ln z. Then

Ut = −2ε
zt

z
, Ux = −2ε

zx

z
, Uxx = −2ε

zxx

z
+ 2ε

(zx)2

z2 .

5NT — In the western literature, it is customary to call this equation, “the Burgers equation with viscosity”;
accordingly, the term “Burgers equation” then designs whatis called the Hopf equation in our lectures.
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Equation (5.10) then rewrites as

−2ε
zt

z
+ 2ε2 (zx)2

z2 = −2ε2zxx

z
+ 2ε2 (zx)2

z2 ,

so that we are reduced to a linear equation for the functionz = z(t, x), which is the
classical heat equation:

zt = εzxx . (5.11)

Remark 5.3.The linearization method pointed out hereabove was first used by the
Russian mechanicist V. A. Florin in 1948 in his investigation of a physical applica-
tion. Later on, in the 1950th, this method was rediscovered by the Americanscholars
E. Hopf and S. Cole; nowadays the transformation is often named after them (it would
be more correct to speak about the Florin–Hopf–Cole transformation).

It follows from the above substitution that a solution of equation (5.9) has the form

u = Ux = −2ε
zx

z
,

wherez = z(t, x) is a solution of the heat equation (5.11).
As is well-known from the theory of second-order linear PDEs, solutionsof the

Cauchy problem for the heat equation (5.11), even with initial data that are only piece-
wise continuous, become infinitely differentiable fort > 0. Hence, solutions of the
Burgers equation (5.9) are also infinitely differentiable functions, and,consequently,
they cannot include shock waves.

Now assume that the so-called “simple wave”, given by

u(t, x) = u− +
u+ − u−

2
[1 + sign(x− ωt)] =

{

u− for x < ωt,

u+ for x > ωt,
(5.12)

whereω = const, is a generalized solution of equation (5.1) in the sense of the integral
identity (5.3). For this to hold, it is necessary and sufficient that the Rankine–Hugoniot
condition

ω ≡
dx

dt
=
f(u+) − f(u−)

u+ − u−
(5.13)

holds on the discontinuity linex(t) = ωt.
For this case, the idea of the vanishing viscosity method can be applied as follows.

Let us consider a solutionu = u(t, x) of the form (5.12) as admissible, if it can be
obtained as a pointwise limit (forx 6= ωt) of solutionsuε = uε(t, x) of the equation

uε
t + (f(uε))x = εuε

xx (5.14)

asε→ +0. (The approach developed below has been suggested by I. M. Gel’fand [18]).
Taking into account the special structure of the solutionu = u(t, x), let us seek a

solution of (5.14) under the form

uε(t, x) = v(ξ), ξ =
x− ωt

ε
. (5.15)
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Substituting this ansatz into equation (5.14), we infer that the functionv = v(ξ) satis-
fies the equation

−ωv′ + (f(v))
′
= v′′. (5.16)

On the other hand, it is clear that the functionuε = v
(

x−ωt
ε

)

converges pointwise
(for x 6= ωt) to a functionu = u(t, x) of the form (5.12) asε → +0 if and only if the
functionv = v(ξ) satisfies the boundary conditions

v(−∞) = u− , v(+∞) = u+ . (5.17)

Remark 5.4.One cannot hope for uniqueness of such a functionv = v(ξ). Indeed, if
v is a solution of the problem (5.16)–(5.17), then the functions ˜v = v(ξ − ξ0) are also
solutions of this problem, for allξ0 ∈ R.

Integrating (5.16), we obtain

v′ = −ωv + f(v) + C = F (v) + C, C = const. (5.18)

The ODE (5.18) is autonomous, of first-order, and its right-hand sideF (v) + C is
smooth; thus (5.18) admits a solution which tends to constant statesu− (asξ → −∞)
andu+ (asξ → +∞) if and only if the following conditions are satisfied:

(i) u− andu+ are stationary points of this equation, i.e., the right-hand side of equa-
tion (5.18) is zero at these points:

F (u−) + C = F (u+) + C = 0,

so thatC = −F (u−) = −F (u+). Upon rewriting the equalityF (u−) = F (u+)
under the formf(u−) − ωu− = f(u+) − ωu+, we see that it coincides with the
Rankine–Hugoniot condition (5.13).

(ii) There is no stationary point in the open interval betweenu− andu+; moreover,
the right-hand sideF (v) − F (u−) = F (v) − F (u+) of (5.18) restricted to this
interval should be

a) positive ifu− < u+ (then the solution increases):

F (v) − F (u−) > 0 ∀v ∈ (u−, u+) if u− < u+; (5.19)

b) negative ifu− > u+ (v = v(ξ) decreases):

F (v) − F (u+) < 0 ∀v ∈ (u+, u−) if u+ < u−. (5.20)

When the above conditions are satisfied, the solutions of equation (5.16) with the
desired boundary behaviour are given by the formula

∫ v

v0

dw

F (w) − F (u−)
= ξ − ξ0, v0 =

u+ + u−
2

.
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Our point is that the relations (5.19)–(5.20) express analytically the admissibility con-
dition.

Now let us interpret this condition geometrically. SubstitutingF (v) = f(v) − ωv
into (5.19) and (5.20), we have

f(v) − f(u−) > ω(v − u−) ∀v ∈ (u−, u+) if u− < u+,

f(v) − f(u+) < ω(v − u+) ∀v ∈ (u+, u−) if u+ < u−,

which, in view of the Rankine–Hugoniot condition (5.13), amounts to

f(u) − f(u−)

u− u−
> ω =

f(u+) − f(u−)

u+ − u−
∀u ∈ (u−, u+) if u− < u+, (5.19′)

f(u) − f(u+)

u− u+
< ω =

f(u+) − f(u−)

u+ − u−
∀u ∈ (u+, u−) if u+ < u−. (5.20′)

Figure 12. Visualization of admissible jumps, II.

Let us represent the graph of a flux functionf = f(u) (see Fig. 12). Condition
(5.19′) means that the chordCh with the endpoints(u−, f(u−)), (u+, f(u+)) has a
smaller slope (the slope is measured as the inclination of the chord with respect to
the positive direction of theu-axis) than the slope of the segment joining the point
(u−, f(u−)) with the point(u, f(u)), whereu runs over the interval(u−, u+)). Con-
sequently, the point(u, f(u)) and thus the whole graph off = f(u) on the interval
(u−, u+) lies above the chordCh. In the same way, condition (5.20′) signifies that the
graph off = f(u) for u ∈ (u+, u−) is situated below the chordCh.

Remark 5.5.Upon varying the valuesu−, u+ and also the functionf = f(u), one
can construct different convergent sequences of admissible generalized solutions of
the form (5.15). It is natural to consider as admissible also the pointwise limits of
the admissible solutions. Therefore, it is clear that any situation where the graph of
f = f(u) touches the chordChshould also be considered as admissible.

In conclusion, we obtain that a solutionu of the equation (5.1) may have a jump
from u− to u+ (a jump in the direction of increasingx) when the followingjump
admissibility condition holds:
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• in the caseu− < u+, the graph of the functionf = f(u) on the segment
[u−, u+] is situatedabove the chord (in the non-strict sense) with the endpoints
(u−, f(u−)) and(u+, f(u+));

• in the caseu− > u+, the graph of the functionf = f(u) on the segment
[u+, u−] is situatedbelow the chord (in the non-strict sense) with the endpoints
(u−, f(u−)) and(u+, f(u+)).

Figure 13. Visualization of admissible jumps, III.

Let us give another analytical expression of the condition obtained. Consider a
curve on which the solution has a jump fromu− to u+. In coordinates(u, f) we draw
the graph of the functionf = f(u) on the interval betweenu− andu+ and the chord
joining the endpoints of this graph. As in Fig. 8 and Fig. 9 (see Section 4.3),we mean
that the axes(u, f) are aligned with the axes(t, x). Now on the same graph, let us
situate the unit normal vectorν = (cos(ν, t), cos(ν, x)) to the discontinuity curve (see
Fig. 13). Introduce the pointsA = (u−, f(u−)), B = (u+, f(u+)), and let the point
C = (u, f(u)) run along the graph. The vectorν is orthogonal to the vector

−−→
AB (this

is an expression of the Rankine–Hugoniot condition (5.13)) and is oriented “upwards”,
i.e., cos(ν, x) > 0 (this is because we have chosen the normal which forms an acute
angle with the positive direction of thex-axis). The condition stating that the graph
of the functionf = f(u) on the interval betweenu− andu+ is located over the chord
(“over”, in the non-strict sense) means exactly that the angle between the vectors

−→
AC

(or, equivalently,
−−→
BC) andν does not exceedπ/2, that is, the scalar product(

−→
AC, ν)

of these vectors is nonnegative. Thus for the caseu− < u+, we have

(u− u−) cos(ν, t) + (f(u) − f(u−)) cos(ν, x) > 0 ∀u ∈ (u−, u+). (5.21)

Similarly, the condition stating that the graph is located under the chord (“under”, in
the non-strict sense) means that the angle between the same vectors as before is greater
than or equal toπ/2, that is, the scalar product(

−−→
BC, ν) of these vectors is non-positive.

Thus for the caseu− > u+, we have

(u− u+) cos(ν, t) + (f(u) − f(u+)) cos(ν, x) 6 0 ∀u ∈ (u+, u−). (5.22)
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Remark 5.6.The admissibility conditions deduced with the vanishing viscosity ap-
proach agree perfectly with the conditions obtained in the previous section for the case
of a convex/concave flux functionf = f(u). Indeed the convexity (respectively, the
concavity) of a function means, by definition, that the chord joining two arbitrary points
of the graph of the function lies above (respectively, lies below) the graph itself.

In the sequel of these lectures, unless an additional precision is given,by asolution
of equation (5.1) we will tacitly mean a piecewise smooth function that satisfies the
integral identity (5.3) and, in addition, the admissibility condition formulated in the
present section.

Exercise 5.1.Examine the question of admissibility of each of the jumps(jumps satis-
fying the Rankine–Hugoniot condition(5.13)) present in the solutionsu = u(t, x) to
the corresponding equations of the form(5.1):

(i) for the generalized solutionsu = u(t, x) given in Exercise4.1;

(ii) for the generalized solutionsu = u(t, x) constructed in Exercise4.2;

(iii) for the generalized solutionsu = u(t, x) constructed in Exercise4.7.

5.3 The notion of entropy and irreversibility of processes

The jump admissibility conditions obtained in the previous sections are often called
entropy-increase type conditions.6 Where does this name come from? The reason is,
the equations we study model nonlinear physical phenomena (called “processes” in
the sequel) which are time-irreversible, and the function which characterizes this irre-
versibility is called “entropy”.

The Hopf equation (1.1) is, certainly, the simplest model for the displacement of
a gas in a tube; in more correct (more precise) models, also the pressure of the gas
is present, moreover, the density of the gas enters the equations when thegas is com-
pressible. The entropy functionS is expressed with the help of the two latter quantities
characterizing the gas, namely the pressure and the density. In the field of fluid dynam-
ics, already in the 19th century it has been known that the entropy functiondoes not
decrease in time across the front of a shock waveΓ:

S+ = S(t+ 0, x) > S− = S(t− 0, x), (t, x) ∈ Γ. (5.23)

Therefore, all the inequalities that express irreversibility of processesin nature are
called “inequalities of the entropy increase type”. For the simplest gas dynamics equa-
tion, which is the Hopf equation, the role of entropy is played by the kinetic energy of
the particle located at the pointx at the time instantt:

S(t, x) ≡
1
2
u2(t, x).

6NT — In the literature on conservation laws, one often speaks of“entropy dissipation conditions”. This term
refers to the inequalities such as (5.28), (5.30) or (5.42) below. Each of these inequalities states the decrease (the
dissipation) and not the increase of another quantity related to variousfunctions called “entropies”.
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Let us show that inequality (5.23) for this “entropy” functionS does hold across an
admissible shock wave.

For the case of the Hopf equation (i.e., forf(u) = u2/2), the Rankine–Hugoniot
condition (5.13) has the form

u− + u+

2
=
dx

dt
. (5.24)

Since the flux functionf(u) = u2/2 is convex, the jump admissibility condition re-
duces to the inequality

u− − u+ > 0. (5.25)

If dx/dt > 0, then (according to Fig. 14) we haveS− = u2
+/2 andS+ = u2

−/2.
Multiplying inequality (5.25) by the expression(u− + u+)/2 (this expression is posi-
tive thanks to (5.24)), we have(u2

− − u2
+)/2> 0, thusS− < S+.

Figure 14. Increase ofS for the Hopf equation.

Similarly, if dx/dt < 0, then (see Fig. 14)

S− =
1
2
(u−)2 <

1
2
(u+)2 = S+.

5.4 Energy estimates

Let us provide another characterization of irreversibility for equation (5.1), a charac-
terization which has a clear physical meaning. Consider the full kinetic energy of the
particle system under consideration:

E(t) =

∫ +∞

−∞

1
2
u2(t, x) dx. (5.26)

For smooth (and, say, compactly supported) initial data, there exists a classical
solutionu of problem (5.1)–(5.2) on some time interval[0, T ), T > 0; moreover, for
all fixed t, this solution has compact support inx. In the present section, we will only
consider those solutionsu of equation (5.1) for which the kinetic energy (5.26) is finite
(this holds, e.g., in the above situation whereu = u(t, x) is of compact support in the
variablex).
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Proposition 5.7.For classical solutions of equation(5.1) there holds

E(t) ≡ const,

i.e., the kinetic energy(5.26) is afirst integralof the equation(5.1).

Proof. Since we have assumed thatu(t,±∞) = 0, we have

dE

dt
=

∫ +∞

−∞

uut dx = −

∫ +∞

−∞

u(f(u))x dx

= −uf(u)
∣

∣

∣

x=+∞

x=−∞

+

∫ +∞

−∞

f(u)ux dx =

∫ u(t,+∞)

u(t,−∞)

f(u) du = 0.

Now consider the corresponding equation with viscosity:

uε
t + (f(uε))x = εuε

xx (5.27)

Proposition 5.8.Letuε 6≡ 0 be a solution of equation(5.27) such that, in addition,uε,
uε

x, anduε
xx decay to zero asx → ±∞ at a sufficiently high rate, and uniformly int.

Then the full kinetic energyE = E(t) of this solution is a decreasing function of time.

Proof. As in the proof of the previous proposition, we find

dE

dt
=

∫ +∞

−∞

uεuε
t dx

=

∫ +∞

−∞

uε (εuε
xx − (f(uε))x) dx = −ε

∫ +∞

−∞

(uε
x)

2
dx 6 0.

(5.28)

Notice that we have the equality sign in (5.28) only in the case of a functionuε that is
constant inx. Since we assume that this function decays to zero asx → ∞, we have
dE/dt < 0 unlessuε ≡ 0.

Recall (see Section 5.2) that admissible generalized entropy solutionsu of equa-
tion (5.1) were obtained as limits of solutionsuε of equations (5.27); on the latter
solutions, the kinetic energy is dissipated. Therefore, it can be expectedthat also on
the limiting solutionsu, the kinetic energy does not increase with time.

Proposition 5.9.Assume thatu = u(t, x) is a piecewise smooth admissible generalized
entropy solution of equation(5.1) with one curve of jump discontinuityx = x(t). Then
the speed of decrease of the kinetic energyE = E(t) of this solution is equal, at any
instant of timet = t0, to the areaS(t0) delimited by the graph of the flux function
f = f(u) on the segment[u−, u+] (or on the segment[u+, u−]) and by the chord
joining the endpoints(u−, f(u−)) and(u+, f(u+)) of this graph(see Fig.15):

dE

dt
(t0) = −S(t0). (5.29)

As previously, byu± = u±(t0) we denote the one-sided limits (asx → x(t0)) of the
functionx 7→ u(t0, x) as the point approaches the discontinuity positionx(t0).
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Figure 15. Area that determines the energy decrease rate.

Proof. To be specific, consider the case whereu− < u+ and, consequently, the graph
of the functionf = f(u) on the segment[u−, u+] lies above the corresponding chord.
Then

S =

∫ u+

u−

f(u) du−
f(u+) + f(u−)

2
(u+ − u−).

On the other hand,

dE

dt
=

d

dt

∫ +∞

−∞

1
2
u2(t, x) dx =

d

dt

(

∫ x(t)

−∞

1
2
u2(t, x) dx+

∫ +∞

x(t)

1
2
u2(t, x) dx

)

=
1
2
u2
− · ẋ(t) +

∫ x(t)

−∞

uut(t, x) dx−
1
2
u2

+ · ẋ(t) +

∫ +∞

x(t)

uut(t, x) dx

=
u2
− − u2

+

2
· ẋ(t) −

∫ x(t)

−∞

u (f(u))x dx−

∫ +∞

x(t)

u (f(u))x dx

=
u2
− − u2

+

2
· ẋ(t) − uf(u)

∣

∣

∣

x=x(t)

x=−∞

+

∫ x(t)

−∞

f(u)ux dx

− uf(u)
∣

∣

∣

x=+∞

x=x(t)
+

∫ +∞

x(t)

f(u)ux dx.

Thanks to the Rankine–Hugoniot condition (5.13) and taking into accountthe fact
thatu(t,±∞) = 0, we have

dE

dt
=
u2
− − u2

+

2
·
f(u+) − f(u−)

u+ − u−
− u−f(u−) +

∫ u−

0
f(u) du+ u+f(u+) +

∫ 0

u+

f(u) du

= u+f(u+) − u−f(u−) −
(u+ + u−)(f(u+) − f(u−))

2
−

∫ u+

u−

f(u) du

=
(u+ − u−)(f(u+) + f(u−))

2
−

∫ u+

u−

f(u) du = −S.
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Remark 5.10.If the solution contains several shock waves (i.e., several jump disconti-
nuities), thenon each of the discontinuity curvesthe energy is lost (dissipated) accord-
ing to the inequality (5.29). (The proof of this fact is left to the reader.)

Conclusion.We see that, according to Proposition 5.7, we haveE(t) = const= E(0)
on smooth solutionsu = u(t, x) of the equation (5.1), up to the critical instant of time
T (the instant when singularities arise in the solutions), i.e., up to the timeT there is
no dissipation of the kinetic energy; the kinetic energy stays constant on[0, T ).

However, when shock waves appear, according to (5.29), we have

dE

dt
< 0,

so that the kinetic energy dissipates (on a shock wave, a part of it is transformed into
heat). Consequently, the evolution of admissible generalized solutions with shock
waves is related to the decrease of the kinetic energy; this is what makes thephysi-
cal processes modelled by equation (5.1) irreversible.

The readers who sometimes spend vacations at the sea are probably acquainted
with this phenomenon. Near the shore, if the sea is calm and the waves are temperate,
the sea temperature near the surface is almost the same as the air temperature above.
When the wind becomes stronger, waves become foamy, turbulent structures occur;
these “broken waves” can be seen as shock waves on the sea surface. In this case, after
some time, one can observe that the temperature of the surface layer ofthe sea has
become higher than the air temperature. This heating phenomenon is conditioned by
the heat production that occurs on the shock waves.

From the purely mathematical point of view, this situation stems from the factthat
equation (5.1) does not change under the simultaneous change oft into −t and ofx
into−x (similarly, any of the shift transformations along the axes, namelyx→ x− x0

or t → t − T , does not change the equation); in this case, it is said that the equation
remains invariant under the corresponding transformation. Consequently, along with
anysmooth, ast < T , solutionu = u(t, x) of equation (5.1), the transformed function
ũ(t, x) ≡ u(T − t,−x) will also be asmoothsolution of the same equation.

The same property holds for generalized solutions (in the sense of integral equal-
ity (5.3); the admissibility condition is not required), because the identity (5.3) is in-
variant under the same transformations.

If, on the contrary,u = u(t, x) is anadmissible discontinuous generalizedsolution
of equation (5.1), then the corresponding function ˜u will not be an admissible gen-
eralized (“entropy”) solution of the equation considered. This is because the entropy
increase condition is not invariant under the transformation which includes the time
reversal (the entropy increase condition is then replaced by the converse entropy de-
crease condition). Therefore, the simultaneous change oft into T − t and ofx into
−x is not allowed in the presence of discontinuous solutions. Hence, an admissible
discontinuous generalized solutionu = u(t, x) is transformed into the non-admissible
(“wrong”) discontinuous generalized solution ˜u(t, x) ≡ u(T − t,−x).
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5.5 Kruzhkov’s definition of a generalized solution

In the preceding sections we discussed the requirements which one should impose on
jumps (i.e., discontinuities of the first kind occurring along smooth curves) of general-
ized solutions (in the sense of the integral identity (5.3)) of equation (5.1). However,
this kind of restrictions is only meaningful for piecewise smooth functions;in this case
the notion of a jump, i.e., a discontinuity curve with one-sided limits of a solutionon
this curve, is meaningful. In contrast, while defining a generalized solutionu = u(t, x)
of this equation in the sense of the integral identity (5.3), we only need that the integrals
in (5.3) make sense. Clearly, the latter assumption is by far less restrictive compared
with the assumption of piecewise smoothness of the functionu = u(t, x). Therefore,
a natural question arises, namely, how could one define an admissible generalized so-
lution to the Cauchy problem (5.1)–(5.2), so that the new notion includes both the
integral identity and a condition of the entropy increase type (we need somegener-
alization of the entropy increase conditions stated above as we want to extend them
to solutions which may not be piecewise smooth). The answer to this questionwas
given by S. N. Kruzhkov (see [25, 26]), and the answer applies notonly to the prob-
lem we consider in these lectures but also to a wider class of equations and systems.
In the same works of S. N. Kruzhkov, the existence and uniqueness ofan admissible
generalized solution, in the sense of the new definition, was proved.

Let us now give the aforementioned definition. One of the widest spacesof func-
tions in which generalized solutions of our problem can be searched is the space of
bounded measurable functionsu = u(t, x) defined in the stripΠT = [0, T ) × Rx.

Definition 5.11.A bounded measurable functionu = u(t, x) : ΠT → R is called a
generalized entropy solution7 (in the sense of Kruzhkov) of the problem (5.1)–(5.2) if

(i) for any constantk ∈ R and any nonnegative test functionϕ = ϕ(t, x) ∈ C∞
0 (ΠT )

there holds the inequality
∫

ΠT

[

|u− k|ϕt + sign(u− k)
(

f(u) − f(k)
)

ϕx

]

dx dt > 0; (5.30)

(ii) there holdsu(t, ·) → u0 ast→ +0 in the topology ofL1,loc(R), i.e.,

∀ [a, b] ⊂ R, lim
t→+0

∫ b

a

|u(t, x) − u0(x)| dx = 0. (5.31)

Proposition 5.12.If a functionu = u(t, x) is a generalized entropy solution in the
sense of Definition5.11of problem(5.1)–(5.2), then it is also a generalized solution of
equation(5.1) in the sense of the integral identity(5.3).

Proof. Note that the function taking everywhere a constant valuek is a classical solu-
tion and, therefore, it is also a generalized solution of equation (5.1). Itfollows that for

7NT — The western literature refers to “Kruzhkov entropy solutions” or merely to “entropy solutions”.
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any test functionϕ ∈ C∞
0 (ΠT ), there holds

∫

ΠT

[kϕt + f(k)ϕx] dx dt = 0. (5.32)

This identity can also be checked by a direct calculation.
Choose a valuek > ess-sup(t,x)∈ΠT

u(t, x) in (5.30) . We have
∫

ΠT

[

(k − u)ϕt + (f(k) − f(u))ϕx

]

dx dt > 0

for any functionϕ ∈ C∞
0 (ΠT ), ϕ(t, x) > 0. Taking into account (5.32), we conclude

that

−

∫

ΠT

[

uϕt + f(u)ϕx

]

dx dt > 0. (5.33)

Then takingk < ess-inf(t,x)∈ΠT
u(t, x), we obtain in the same way

∫

ΠT

[uϕt + f(u)ϕx] dx dt > 0. (5.34)

Comparing the inequalities (5.33) and (5.34), we arrive at the equality
∫

ΠT

[uϕt + f(u)ϕx] dx dt = 0 ∀ϕ(t, x) ∈ C∞
0 (ΠT ), ϕ(t, x) > 0.

This is the integral identity we were aiming at, except that we need it for an arbitrary
(not necessarily nonnegative) functionφ ∈ C∞

0 (ΠT ). Therefore, in order to conclude
the proof, it remains to notice that any functionϕ ∈ C∞

0 (ΠT ) can be represented as
the differenceϕ = ϕ1 −ϕ2 of two nonnegativetest functionsϕ1 andϕ2. It is sufficient
to take a nonnegative functionϕ1 ∈ C∞

0 (ΠT ) with ϕ1 ≡ supΠT
ϕ on the support ofϕ.

Since the relation (5.3) holds for bothϕ1 andϕ2, it also holds true forϕ.

Proposition 5.13.Letu = u(t, x) be a piecewise smooth function that is a generalized
entropy solution of equation(5.1) in the sense of Definition5.11. Then on each discon-
tinuity curveΓ (given by the equationx = x(t)) the adequate admissibility condition,
(5.21) or (5.22), holds.

Proof. Fix a point(t0, x0) ∈ Γ, x0 = x(t0), on the discontinuity curveΓ. As usual,
denote byu±(t0, x0) the one-sided limits ofu(t0, x) on Γ asx approachesx0. To be
specific, assume thatu−(t0, x0) < u+(t0, x0). Let us fix an arbitrary numberk ∈
(u−, u+) and choose a small neighbourhoodO ⊂ ΠT of the point(t0, x0) such that

u(t, x) < k for (t, x) ∈ O− ≡ {(t, x) ∈ O | x < x(t)}, (5.35)

u(t, x) > k for (t, x) ∈ O+ ≡ {(t, x) ∈ O | x > x(t)}. (5.36)

This is always possible since we consider a piecewise smooth solution. Moreover,
without loss of generality, we can assume thatu is smooth in each of the subdomains
O+ andO−.
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From (5.30) it follows that for any test functionϕ ∈ C∞
0 (O), ϕ(t, x) > 0, there

holds
∫

O

[

|u− k|ϕt + sign(u− k) (f(u) − f(k))ϕx

]

dx dt > 0. (5.37)

Let us split the latter integral over the domainO into the sum of integrals overO− and
O+. Taking into account (5.35)–(5.36), we obtain

−

∫

O−

[

(u− k)ϕt + (f(u) − f(k))ϕx

]

dx dt

+

∫

O+

[

(u− k)ϕt + (f(u) − f(k))ϕx

]

dx dt > 0.

Now let us transfer thet andx derivatives according to the integration-by-parts formula
(4.1). In addition to the integrals over the domainsO− andO+, also integrals over their
boundaries will arise, that is, we will get integrals over∂O and overΓ ∩ O. As ϕ is
compactly supported inO, the integral over∂O is zero. Consequently, we obtain

∫

O−

[

ut + (f(u))x

]

ϕ dx dt

−

∫

Γ∩O

(

(u− − k) cos(ν, t) + (f(u−) − f(k)) cos(ν, x)
)

ϕ dS

−

∫

O+

[

ut + (f(u))x

]

ϕ dx dt

−

∫

Γ∩O

(

(u+ − k) cos(ν, t) + (f(u+) − f(k)) cos(ν, x)
)

ϕ dS > 0.

Hereν is the normal vector to the curveΓ pointing fromO− to O+ (i.e., the outward
normal vector to the boundary ofO− and, at the same time, the interior normal vector
forO+). According to Proposition 5.12, the functionu = u(t, x) is a generalized (in the
sense of the integral identity (5.3)) solution of equation (5.1). Sinceu is smooth inO±,
it is also a classical solution of the equation in each of the subdomainsO− andO+.
Consequently, we have in bothO− andO+ the pointwise identityut + (f(u))x = 0.
Thus for any nonnegative test functionϕ ∈ C∞

0 (O), there holds

∫

Γ∩O

(

(2k − u− − u+) cos(ν, t) + (2f(k) − f(u−) − f(u+)) cos(ν, x)
)

ϕ dS > 0.

This means that for allk ∈ (u−, u+), we have

(2k − u− − u+) cos(ν, t) + (2f(k) − f(u−) − f(u+)) cos(ν, x) > 0. (5.38)

As already mentioned,u = u(t, x) is a generalized solution of equation (5.1). This
means, in particular, that the Rankine–Hugoniot condition (5.13) is satisfied along the
discontinuity curveΓ (here we take this condition in the equivalent form (4.6)):

(u+ − u−) cos(ν, t) + (f(u+) − f(u−)) cos(ν, x) = 0. (5.39)



48 Gregory A. Chechkin and Andrey Yu. Goritsky

Taking into account (5.39), we can rewrite inequality (5.38) under the form

2
[

(k − u−) cos(ν, t) + (f(k) − f(u−)) cos(ν, x)
]

−
[

(u+ − u−) cos(ν, t) + (f(u+) − f(u−)) cos(ν, x)
]

= 2
[

(k − u−) cos(ν, t) + (f(k) − f(u−)) cos(ν, x)
]

> 0

for all k ∈ (u−, u+). This is exactly the jump admissibility condition (5.21).
As to the caseu+ < u−, transforming the term sign(u − k) and the term with the

absolute value in equality (5.37) in the same vein as before, we obtain the minus signs
in front of the same expressions. Accordingly, in place of the relation (5.38), we get

(2k − u− − u+) cos(ν, t) + (2f(k) − f(u−) − f(u+)) cos(ν, x) 6 0

for all k ∈ (u+, u−). With the help of (5.39), we obtain the inequality

2
[

(k − u+) cos(ν, t) + (f(k) − f(u+)) cos(ν, x)
]

+
[

(u+ − u−) cos(ν, t) + (f(u+) − f(u−)) cos(ν, x)
]

= 2
[

(k − u+) cos(ν, t) + (f(k) − f(u+)) cos(ν, x)
]

6 0,

which holds for allk ∈ (u+, u−). This statement coincides with (5.22).

Finally, let us show that inequality (5.30) can be derived from the vanishing vis-
cosity approach. Indeed, letu = u(t, x) be a limit in the topology ofL1,loc(ΠT ), as
ε → +0, of classical solutionsuε = uε(t, x) to the Cauchy problem consisting of the
equation

ut + f ′(u)ux = εuxx (5.40)

and the initial datumu(0, x) = u0(x).
Take any convex functionE = E(u) ∈ C2(R) and multiply equation (5.40) by

E′(u). The equalities

E′(u)ut =
∂E(u(t, x))

∂t
, f ′(u)E′(u)ux =

∂

∂x

(

∫ u(t,x)

k

f ′(ξ)E′(ξ) dξ
)

,

E′(u)uxx = (E(u))xx − E′′(u)u2
x,

imply

Et +
(

∫ u

k

f ′(ξ)E′(ξ) dξ
)

x
= ε (E(u))xx − εE′′(u)u2

x 6 ε (E(u))xx (5.41)

sinceE′′(u) > 0 andε > 0. Now let us multiply inequality (5.41) by a test function
ϕ = ϕ(t, x) > 0 from Definition 5.11 and integrate it overΠT . Using the integration-
by-parts formula, we transfer all the derivatives to the test functionϕ:

−

∫

ΠT

[

ϕtE(u) + ϕx

∫ u

k

f ′(ξ)E′(ξ) dξ

]

dx dt 6 ε

∫

ΠT

ϕxxE(u) dx dt
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Passing to the limit asε→ +0, we get
∫

ΠT

[

ϕtE(u) + ϕx

∫ u

k

f ′(ξ)E′(ξ) dξ

]

dx dt > 0. (5.42)

Let {Em} be a sequence ofC2-functions approximating the functionu 7→ |u − k|
uniformly onR. SubstituteE = Em(u) in the inequality (5.42) and pass to the limit
asm → ∞. We can chooseEm in such a way thatE′

m is bounded andE′
m(ξ) →

sign(ξ − k) for all ξ ∈ R, ξ 6= k. Thus, we have
∫ u

k

f ′(ξ)E′
m(ξ) dξ −→

∫ u

k

f ′(ξ) sign(ξ − k) dξ

= sign(u− k)

∫ u

k

f ′(ξ) dξ = sign(u− k) (f(u) − f(k)) .

In this way, we deduce (5.30) from (5.42).

Problem 5.2.Justify in detail the last passage to the limit in the above proof.

Remark 5.14.In the case of a convex flux functionf = f(u), we can replace the
integral inequality (5.30) in the definition of a generalized entropy solution by, first,
the integral identity (5.3), and, second, the additional admissibility requirement that the
inequality (5.42) holds for one fixed strictly convex functionE = E(u). Uniqueness
of the so defined solution is shown in [39].

In the context of the inequality (5.42), a convex functionE = E(u) is called an “en-
tropy” of the equation (5.1); indeed, inequality (5.42) is another variant of the “entropy
increase-type conditions” in the sense of Section 5.3.

Remark 5.15.The definition of a generalized entropy solution on the basis of the in-
equality (5.30) extends to the multi-dimensional analogue of the problem (5.1)–(5.2).
In this case, we havex ∈ R

n,

f : R → R
n, (f(u))x ≡ ∇xf(u(t, x)), ϕx = ∇xϕ,

and(f(u) − f(k))ϕx is the scalar product of the vector(f(u) − f(k)) with the gra-
dient of ϕ with respect to the space variablex. This way to define the notion of a
solutionu = u(t, x), and also the family of entropies|u − k|, k ∈ R, is often named
after S. N. Kruzhkov (Kruzhkov’s solutions, the Kruzhkov entropies). These notions
were introduced in the works [25, 26]. Also the techniques of existence and uniqueness
proofs, techniques deeply rooted in the physical context of the problem, were set up in
these papers.
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6 The Riemann problem (evolution of a primitive jump)

In this section, we consider the so-called Riemann problem for equation (4.2), which is
the problem of evolution from a simplest piecewise constant initial datum. That is, we
will construct admissible generalized solutionsu = u(t, x) of the following problem
in a stripΠT = {−∞ < x < +∞,0< t < T}:

ut + (f(u))x = 0, u
∣

∣

t=0
= u0(x) =

{

u− for x < 0,
u+ for x > 0,

(6.1)

whereu− andu+ are two arbitrary constant states. The solutions we want to construct
will be piecewise smooth inΠT . This means that, first, they will satisfy the equation
in the classical pointwise sense on all smoothness components of the solution; and
second, they will satisfy both the Rankine–Hugoniot condition (4.5) and the entropy
increase condition on each curve of jump discontinuity. These solutions willconverge
to the functionu0 ast→ +0 at all points, except for the pointx = 0.

The proof of the uniqueness of an admissible generalized solution (in the sense of
the integral identity and entropy increase condition) of the problem (6.1) can be found
in [27, Lectures 4-6]; its existence is demonstrated below with an explicit construction.

First of all, let us notice that the equation we consider is invariant under thechange
x → kx, t → kt; moreover, the initial datum also remains unchanged under the action
of homothetiesx → kx, k > 0. Furthermore, the entropy increase condition is also
invariant under the above transformations. Admitting the uniqueness of an admissible
generalized solution of the above problem, we conclude that any changeof variables
x → kx, t → kt with k > 0 transforms the unique solutionu = u(t, x) of the problem
into itself, i.e.,

u(kt, kx) ≡ u(t, x) ∀k > 0.

This exactly means that the functionu = u(t, x) remains constant on each rayx = ξt,
t > 0, issued from the origin(0,0), so thatu(t, x) depends only on the variableξ = x/t:

u(t, x) = u(x/t), t > 0. (6.2)

Solutions that only depend onx/t are calledself-similar. In particular, jump dis-
continuity curves of self-similar solutions can only be straight rays emanating from the
origin (0,0).

Exercise 6.1.Find all the self-similar solutions of the equations from Exercise4.2 such
that the solutions are smooth in the whole half-planet > 0.

6.1 The Hopf equation

To start with, consider the Riemann problem (6.1) in the casef(u) = u2/2:

ut + uux = 0, u
∣

∣

t=0
= u0(x) =

{

u− for x < 0,
u+ for x > 0.

(6.3)
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First of all, we describe all the smooth self-similar solutions of the Hopf equation.
Substituting (6.2) into the equation (6.3), we find

−
x

t2
u′
(x

t

)

+
1
t
u
(x

t

)

u′
(x

t

)

=
1
t
u′
(x

t

)(

u
(x

t

)

−
x

t

)

= 0,

i.e., eitheru′ = 0, so that we haveu ≡ C whereC is a constant, oru = x/t. Conse-
quently, the set of all smooth self-similar solutions of the Hopf equation reduces to the
constant solutions and to the functionx/t.

Now our task is to juxtapose pieces of the above smooth self-similar solutionsin a
correct way (i.e., respecting the Rankine–Hugoniot and the entropy increase condition
on the discontinuity rays), with the goal to comply with the initial datumu0 = u0(x).

First, let us see which rays can separate two smoothness components ofsuch a
solution: two adjacent components may correspond either to two different constant
states, or to a constant state and to the restriction of the functionx/t on some cone
with the vertex(0,0).

It follows from the Rankine–Hugoniot condition (4.5) that two constant functions
u(t, x) ≡ u1 andu(t, x) ≡ u2, ui = const, can only be juxtaposed along the ray

x =
f(u2) − f(u1)

u2 − u1
t =

1
2
u2

2 − u2
1

u2 − u1
t =

u2 + u1

2
t,

and because of the entropy increase condition, the jump is admissible only whenu
jumps from a greater to a smaller value (we mean that the direction of the jumpis such
thatx grows). Consequently, if we specify, e.g., thatu2 > u1, then we should have

u(t, x) = u2 for x <
u2 + u1

2
t , and u(t, x) = u1 for x >

u2 + u1

2
t .

As to the juxtaposition of a constantu(t, x) ≡ u3 = const and the functionu(t, x) =
x/t, we have the following. If the two functions juxtapose along a rayx = ξt, then the
limit of the functionx/t on this ray equalsξ, and (4.5) yields

ξ =
dx

dt
=
f(u3) − f(ξ)

u3 − ξ
=

1
2
u2

3 − ξ2

u3 − ξ
=
u3 + ξ

2
,

so thatξ = u3. The latter means that the function obtained by the juxtaposition turns
out to be continuous on the border rayx = ξt = u3t, t > 0. Consequently, here the
discontinuity is a weak, not a strong one.

Now we can solve completely the Riemann problem for the Hopf equation. Here,
two substantially different situations should be considered:

(i) When u− > u+, we can construct ashock wavesolution, where the two con-
stantsu− andu+ are joined across the rayx = u2+u1

2 t, according to the Rankine–
Hugoniot condition (see Fig. 16):

u(t, x) =

{

u− for x < u−+u+

2 t,

u+ for x > u−+u+

2 t.
(6.4)
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Figure 16. Shock-wave solution to the Riemann problem.

As has already been mentioned, the jump discontinuity in the desired solution is
compatible with the admissibility condition of increase of entropy.

(ii) If u− < u+, we cannot take the shock wave solution analogous to the previous
case, because the jump discontinuity would not satisfy the entropy increase con-
dition. Here the functionx/t is helpful; it can be combined continuously with the
constant statesu− andu+ (see Fig. 17):

u(t, x) =











u− for x 6 u−t,

x/t for u−t < x < u+t,

u+ for x > u+t.

(6.5)

The so defined solution is indeed continuous in the whole half-planet > 0. The
cone determined by the inequalitiesu−t < x < u+t, t > 0, in which the smooth-
ing of the initially discontinuous function takes place, is called theregion of rar-
efactionof the solution, and the solution (6.5) itself is called acentered rarefaction
wave.

Figure 17. Rarefaction-wave solution to the Riemann problem.

Let us give a comment of geometrical nature to the solutions obtained. Drawing
the graph of the functionf(u) = u2/2 relative to the axes(u, f), parallel to the axes
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(t, x), let us mark the points(u−, u2
−/2) and (u+, u

2
+/2) on the graph. Then, as it

has already been mentioned, the discontinuity ray in solution (6.4) is parallel to the
segment joining these two points (see Fig. 16). Also observe the following fact (in the
sequel, we will see that this is by no means incidental): the lines of weak discontinuity
of the solutionu = u(t, x) given by (6.5), namely the two raysx = u−t andx = u+t,
are parallel to the tangent directions to the graph of the functionf(u) = u2/2 at the
points(u−, f(u−)) and(u+, f(u+)), respectively.

Remark 6.1.Whenu− > u+, formula (6.5) is meaningless: no function in the upper
half-planet > 0 is determined by this formula.

Problem 6.1.Show that the solution constructed above, given by(6.4) or by (6.5),
according to the sign of(u−−u+), is the unique admissible generalized solution of the
Riemann problem(6.3) within the class of all self–similar piecewise–smooth functions.

6.2 The case of a convex flux function

In the case wheref = f(u) is a smooth strictly convex function, the solution of the
Riemann problem (6.1) is almost the same as for the case of the Hopf equation (i.e.,
as for the casef(u) = u2/2). The only difference is that the non-constant smooth
self-similar solutionu(t, x) = x/t of the Hopf equation is replaced by the appropriate
smooth functionψ = ψ(x/t). Let us find this functionψ. As above, we substitute (6.2)
into (6.1) and obtain

−
x

t2
u′ +

1
t
f ′(u)u′ =

1
t
u′ (x/t) (f ′ (u (x/t)) − x/t) = 0.

Therefore, besides the constants obtained from the equationu′ = 0, there exists one
more functionu(ξ) = ψ(ξ) (hereξ = x/t) defined as the solution of the equation

f ′(ψ) = ξ.

That is,ψ is the function inverse tof ′: we haveψ = (f ′)
−1. The inverse function

does exist sincef is strictly convex, so thatf ′ is a strictly monotone function. The
solutionu(t, x) = ψ(x/t), which is discontinuous at(0,0) and continuous fort > 0, is
acentered rarefaction wave.

Remark 6.2.In the previous section, for the particular case of the Hopf equation, we
hadf ′(u) = u, so thatψ(ξ) = (f ′)

−1
(ξ) = ξ.

In the case of a general strictly convex flux functionf = f(u), we construct the
solution of the Riemann problem (6.1) similar to the case of the Hopf equation, namely:

(i) When u− > u+, then we can use the shock wave again, juxtaposing the two
constant statesu− andu+ separated by the rayxt = f(u+)−f(u−)

u+−u−

, t > 0, the slope
of the ray being found from the Rankine–Hugoniot condition:

u(t, x) =







u− for x < f(u+)−f(u−)
u+−u−

t,

u+ for x > f(u+)−f(u−)
u+−u−

t.
(6.6)
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(Compare with (6.4) and Fig. 16.) The jump in the solution obtained is admissible
according to the entropy increase condition.

(ii) When u− < u+, then the function given by (6.6) is a generalized solution but it
does not satisfy the entropy increase condition. Then, similar to the construction
of (6.5), we combine the constant statesu− andu+ with the non-trivial smooth
solutionψ = ψ (x/t). The raysx = ξ−t andx = ξ+t, where the transition occurs,
are determined by the requirement of continuity of the solution:u± = ψ (ξ±), i.e.,
ξ± = f ′(u±), so that

u(t, x) =











u− for x 6 f ′(u−)t,

ψ (x/t) for f ′(u−)t < x < f ′(u+)t,

u+ for x > f ′(u+)t.

(6.7)

The function given by (6.7) is well-defined in the upper half-planet > 0; indeed,
the flux functionf = f(u) is strictly convex, thusf ′ is an increasing function, so that
f ′(u−) < f ′(u+) wheneveru− < u+.

The rarefaction waveψ = ψ(x/t), being continuous fort > 0, takes all the in-
termediate values betweenu− and u+. As ψ is defined as the inverse function of
f ′, the conditionψ (x/t) = û is equivalent to the equalityx = f ′(û)t valid for all
û ∈ [u−, u+]. This means that the rarefaction waveψ = ψ (x/t) takes a given inter-
mediate value ˆu on the rayx = f ′(û)t, t > 0. We can see that this ray is parallel to
the direction tangent to the graphf = f(u) at the point(û, f(û)) of the graph. Thus
in particular, we have justified the statement already noted in the previous section: the
rays of weak discontinuity of the solutionu = u(t, x) given by formula (6.7) (i.e., the
raysx = f ′(u±)t) are aligned with the directions tangent to the graphf = f(u) at the
endpoints(u±, f(u±)) (see Fig. 17). (As always, we assume that the axes(u, f) are
aligned with the axes(t, x).)

Remark 6.3.Note that the convexity off = f(u) is only needed on the segment
[u−, u+] (or [u+, u−], if u+ < u−).

Concerning the case of a strictly concave and smooth (on the segment betweenu−
andu+) flux functionf = f(u), the unique self-similar admissible generalized solution
to the Riemann problem is constructed by exchanging, in a sense, the two situations
described above. Namely: for the caseu− < u+, we obtain the shock wave (6.6); if
u− > u+, then the solution is given by (6.7) (in this casef ′ is a decreasing function,
consequently, here we havef ′(u−) < f ′(u+)). The careful derivation of the formulas
is left to the reader:

Problem 6.2.Solve the Riemann problem(6.1) in the case of a general smooth strictly
concave flux functionf = f(u); represent the piecewise smooth solution graphically
(as in Fig.16 and17); check the validity of the Rankine–Hugoniot condition, and of
the entropy increase inequality on the jumps.

Exercise 6.2.Solve the following Riemann problems:
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(i) ut − (u2)x = 0,

u
∣

∣

t=0
=

{

−1 for x < 0,
1 for x > 0

and u
∣

∣

t=0
=

{

1 for x < 0,
−1 for x > 0;

(ii) ut + u2 · ux = 0,

u
∣

∣

t=0
=

{

0 for x < 0,
2 for x > 0

and u
∣

∣

t=0
=

{

2 for x < 0,
0 for x > 0;

(iii) ut + cosu · ux = 0, u
∣

∣

t=0
=

{

0 for x < 0,
π for x > 0,

u
∣

∣

t=0
=

{

π for x < 0,
0 for x > 0

and u
∣

∣

t=0
=

{

π for x < 0,
2π for x > 0;

(iv) ut + eu · ux = 0,

u
∣

∣

t=0
=

{

0 for x < 0,
1 for x > 0

and u
∣

∣

t=0
=

{

1 for x < 0,
0 for x > 0;

(v) ut + (lnu)x = 0,

u
∣

∣

t=0
=

{

e for x < 0,
1 for x > 0

and u
∣

∣

t=0
=

{

1 for x < 0,
e for x > 0.

6.3 The case of a flux function with inflexion point

In order to treat the Riemann problem in the case wheref = f(u) is neither convex
nor concave, let us first give two definitions.

Definition 6.4.The concave hullof a functionf = f(u) on a segment[α, β] is the
function

f̂(u) = inf
f̃∈F̂

f̃(u), u ∈ [α, β],

whereF̂ is the family of all concave functions̃f = f̃(u) defined on[α, β] such that
f̃(u) > f(u) for all u ∈ [α, β].

Definition 6.5.Theconvex hullof a functionf(u) on a segment[α, β] is the function

f̌(u) = sup
f̃∈F̌

f̃(u), u ∈ [α, β],

whereF̌ is the family of all convex functions̃f = f̃(u) defined on[α, β] such that
f̃(u) 6 f(u) for all u ∈ [α, β].

Remark 6.6.If f is a concave (respectively, convex) function on[α, β], then the func-
tion itself is its concave (respectively, convex) hull:f̂ = f (respectively,f̌ = f );
furthermore, the graph of its convex (respectively, concave) hull isthe straight line
segment joining the endpoints(α, f(α)) and(β, f(β)) of the graph.
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Exercise 6.3. Construct the concave and the convex hulls for the functionf(u) = u3

on the segment[−1,1] as well as for the functionf(u) = sinu on the segment[0,3π].

To solve the Riemann problem (6.1) for a given smooth flux functionf = f(u) in
the caseu− < u+, we first construct the convex hull off on the segment[u−, u+]. In
the caseu− > u+, we construct the concave hull off on the segment[u+, u−].

The graph of any of the hulls consists of some parts of the graph off , where the
graph has the right convexity/concavity direction, and of straight line segments con-
necting these pieces of the graph off (see the above exercise). Each of the straight line
segments will correspond to a jump ray (thus, to a shock wave) in the solution of the
Riemann problem; each of such rays will separate two components of smoothness of
the solution. Each of these components can either be a constant state (u− or u+), or a
smooth self-similar solution of the formu(t, x) = ψ(x/t) (i.e., a centered rarefaction
wave). Hereψ = ψ(ξ) is the function (locally) inverse tof ′, so thatξ = f ′(u) (see
Section 6.2). Notice that on each segment of strict convexity/concavity of f = f(u)
the functionf ′ is indeed invertible.

Example 6.7.Let us construct the solution (i.e., the self-similar admissible generalized
solution) of the following Riemann problem:

ut + (u3)x = 0, u
∣

∣

t=0
=

{

1 for x < 0,
−1 for x > 0.

(6.8)

First, because ofu− = 1 > −1 = u+, we construct the concave hull of the flux
functionf(u) = u3 on the segment[−1,1]. To perform the construction, we draw the
tangent line to the graph at the right endpoint(1,1) of this graph. The tangency point,
denoted by(û, û3) can be determined from the condition

1− û3

1− û
= f ′(û) = 3û2, û 6= 1,

i.e., 1+ û + û2 = 3û2, whence ˆu = −1/2. Notice that the piece of the graph of
f(u) = u3 between the left endpoint(−1,−1) of the graph and the tangency point
(−1/2, (−1/2)3) is concave. Thus we see that8 the graph of the concave hull̂f of the
function f(u) = u3 on the segment[−1,1] consists of: first, the piece of the “cubic
parabola”f = f(u) = u3 on the segment[−1,−1/2]; and second, the straight line
segment that joins the points(−1/2,−1/8) and (1,1) (see Fig. 18). Therefore, the
solution of the Riemann problem under consideration has one and only onerayx = ξt,
t > 0, on which the solution has a jump. This ray is parallel to the straight line segment
in the graph off̂ = f̂(u) (as usual, for the sake of convenient graphical representation,
the axes(t, x) are aligned with the axes(u, f)); expressing analytically the slope of the
strong discontinuity ray, we have

ξ =
1 + 1/8
1 + 1/2

=
3
4
.

8NT — This conclusion requires some thinking; it is based on several easy-to-justify properties of the concave
hull. In particular, one always haŝf(α) = f(α) = f̌(α), f̂(β) = f(β) = f̌(β), with the notation of the
definitions. The reader who analyzed the examples of Exercise6.3 has already performed this construction.
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This ray separates the constant stateu− = 1 (taken from the sidex < 3
4t) and a piece

of rarefactionψ(x/t). Hereψ = ψ(ξ) is the function inverse toξ = f ′(u) = 3u2 on
the segment[−1,−1/2], so that we have

u = ψ(ξ) = −
√

ξ/3, 3/4 6 ξ 6 3.

The limit of the solutionu = u(t, x) from the sidex > 3
4t on the jump rayx = 3

4t

equalsψ(3
4) = −1

2 (this stems from the fact thatf ′(−1
2) = 3(−1

2)
2 = 3

4).
As for the case of a convex flux function (see Section 6.2), the juxtaposition of

the rarefaction waveψ = ψ(x/t) and the constant stateu+ = −1 occurs continuously,
that is, these two smoothness components are separated by the weak discontinuity ray
x = 3t, t > 0. Once more, this ray is aligned with the tangent direction at the point
(u+, f(u+)) =

(

u+, u
3
+

)

= (−1,−1) of the graph of the flux functionf(u) = u3.

Figure 18. Solution for Example 6.7.

Thus we obtain the following solution of problem (6.8):

u(t, x) =











1 for x < 3
4t,

−
√

x
3t for 3

4t < x < 3t,
−1 for x > 3t.

Exercise 6.4.Construct the solution of the Riemann problem

ut + u2 · ux = 0, u
∣

∣

t=0
=

{

−2 for x < 0,
2 for x > 0.

Example 6.8.Let us solve the Riemann problem

ut + (sinu)x = 0, u
∣

∣

t=0
=

{

3π for x < 0,
0 for x > 0.

As we haveu− = 3π > 0 = u+, we have to construct the concave hullf̂ = f̂(u) of
the graph off(u) = sinu on the segment[0,3π]. The graph off̂ (see Fig. 19) consists
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of two pieces of concavity of the graph off(u) = sinu, those on the segments[0, π/2]
and[5π/2,3π], and of the horizontal segment joining the points(π/2,1) and(5π/2,1)
of the sine curve. We conclude that the solutionu = u(t, x) should have one strong
discontinuity (jump) along the rayx = 0, separating the one-sided limit states

5π
2

= lim
x→−0

u(t, x) and
π

2
= lim

x→+0
u(t, x).

We also see that

u(t, x) =

{

3π for x < f ′(3π) · t = cos 3π · t = −t,

0 for x > f ′(0) · t = t.

Figure 19. Solution for Example 6.8.

It remains to expressu from the equation

f ′(u) = cosu = ξ = x/t

on the segments[0, π/2] and[5π/2,3π]. By construction, it is not surprising that the
function f ′(u) = cosu is monotone on these segments. Solutions of the equation
cosu = ξ, −1 6 ξ 6 1, are well-known: we haveu = ±arccosξ + 2πn, n ∈ Z.
On the segment[0, π/2], the solution specifies tou = arccosξ, while on the segment
[5π/2,3π] we getu = arccosξ + 2π. Recapitulating, the solution we have constructed
looks as follows (see Fig. 19):

u(t, x) =



















3π for x 6 −t,

arccosx/t+ 2π for − t < x < 0,
arccosx/t for 0< x < t,

0 for x > t.

The solution of the Riemann problem will change drastically if we exchange the
valuesu+ andu−.

Example 6.9.Construct the solution of the Riemann problem

ut + (sinu)x = 0, u
∣

∣

t=0
=

{

0 for x < 0,
3π for x > 0.
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Now we have to start by constructing the convex hullf̌ = f̌(u) of the function
f(u) = sinu on the segment[0,3π] (see Fig. 20). It consists of two segments of the
lines issued from the graph’s endpoints(0,0) and(3π,0), the lines being tangent to the
sine graph at some points contained within[π,2π], each of the segments being taken
between the endpoint and the tangency point, and of the convex piece of the sine curve
between the two tangency points(u1, sinu1) and(u2, sinu2). Symmetry considerations
readily yield the equalitiesu1 + u2 = 3π, sinu1 = sinu2; also the slopes of the two
tangent segments constructed above only differ by their sign. Denote by

−k =
f(u1) − f(0)

u1 − 0
=

sinu1

u1
= f ′(u1) = cosu1

the slope of the tangent segment passing through the endpoint(0,0). Then+k is the
slope of the other tangent segment. We cannot find explicitly the exact values ofu1, u2

andk, but we can say thatu1 is the smallest strictly positive solution of the equation
tanu1 = u1, thatu2 = 3π − u1, and thatk = − cosu1 = cosu2.

Figure 20. Solution for Example 6.9.

On the segment[u1, u2] ⊂ [π,2π], we can invert the functionf ′(u) = cosu. In
this case,u = (f ′)

−1
(ξ) = 2π − arccosξ, −k 6 ξ 6 k. Now we can write down the

“almost explicit” solution (depicted in Fig. 20):

u(t, x) =











0 for x 6 −kt,

2π − arccosx/t for − kt < x < kt,

3π for x > kt.

The solution above has two strong discontinuities: the one across the linex = −kt
with the jump from 0 tou1, and the one across the linex = kt with the jump fromu2

to 3π.

Exercise 6.5.Construct the solution of the Riemann problem

ut + sin(2u) · ux = 0, u
∣

∣

t=0
=

{

−5π/4 for x < 0,
5π/4 for x > 0.
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Afterword

In the present lecture course, we have introduced the reader to the notions and tools
which underly the nonlocal theory of the Cauchy problem for the one-dimensional (in
the space variable) quasilinear conservation law of the form

ut + (f(u))x = 0. (6.9)

As to the nonlocal theory for the multidimensional scalar equation

ut + divx f(u) = 0, x ∈ R
n, (6.10)

wheref is ann-dimensional vector-function, it appeared in a rather complete form at
the end of the 1960s (see [25, 26]), for the case where the components fi = fi(u)
of the flux function vectorf = f(u) satisfy a Lipschitz continuity condition. This
assumption of Lipschitz continuity results in the effects of finite speed of propagation
of perturbations and of finite domain of dependence (at a fixed point(t, x)) on the
initial data for the solutions of equation (6.10).

A further challenge in the nonlocal theory of equations (6.9) and (6.10) lies in its
generalization to the case where the flux functionf = f(u) is merely continuous, i.e.,
it is not necessarily differentiable. In this case, one expects that purely“parabolic”,
“diffusive” effects should appear: namely, the effects of infinite speed of propagation
of perturbations and of infinite domain of dependence of entropy solutions on the initial
data.

Indeed, let us look at the construction of the admissible generalized entropy solution
of the Cauchy problem

ut +
( |u|α

α

)

x
= 0, x ∈ R, α ∈ (0,1), (6.11)

u
∣

∣

t=0
= u0(x) ≡

[sign(x+ 1) − signx]
2

=

{

1, x ∈ (−1,0),

0, x /∈ (−1,0).
(6.12)

As we have initiallyu0(x) > 0, it can be deduced from Definition 5.11 that the gener-
alized entropy solutionu = u(t, x) of the problem (6.11)—(6.12) is also nonnegative.
Consequently, in (6.9) the flux functionf(u) ≡ uα/α is concave on the interval of all
values that could be possibly taken by the solutionu = u(t, x). On the other hand, be-
cause of the special (“single-step”) structure of the initial function, it can be expected
that, for a sufficiently small time interval 06 t 6 δ, the admissible generalized solu-
tion of our problem will be determined by the solutions of the two Riemann problems
with the initial functions sign(x+ 1) and signx, respectively.

Problem 6.3.Check that the function

u(t, x) =















0 for x < t
α − 1,

1 for t
α − 1< x 6 t,

(

t
x

)
1

1−α for x > t
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Figure 21. Solution of problem (6.11)–(6.12).

(see Fig.21 for a graphic representation of this function) defines a piecewise smooth
admissible generalized solution of the problem(6.11)–(6.12)in the time interval0 <
t < α

1−α = δ.

Problem 6.4.Extend the above solutionu = u(t, x) of the problem(6.11)–(6.12)to
the half-spacet > δ = α

1−α . More exactly, find the equation of the discontinuity curve
x = x(t), using fort > δ the ansatz(see Fig.21)

u(t, x) =

{

0 for x < x(t),
(

t
x

)
1

1−α for x > x(t).

Consequently, for the compactly supported initial function (6.12), the generalized
entropy solutionu = u(t, x) of the Cauchy problem for equation (6.11) has inx a non-
compact (unbounded) support, for all timet > 0 (thus, for an instant of time as small
as desired!). It is known that, in the theory of parabolic PDEs (modelling diffusive pro-
cesses in nature), such effect of infinite speed of propagation leads tonon-uniqueness
of a solution of the Cauchy problem. What would be the influence of this effect on the
theory of nonlocal solvability of the Cauchy problem for equation (6.10), within the
class of all essentially bounded measurable functions in the upper half-plane? It turns
out that, without any further restriction on the continuous componentsfi = fi(u) of
the flux function, there exists at least one generalized entropy solution ofthe Cauchy
problem. Contrarily (as it has been observed for the first time in the work[28]), the
property of uniqueness of a generalized entropy solution of this problemcan be con-
nected with the product of the moduli of continuityωi of the functionsfi. If for all
u, v ∈ R

|fi(u) − fi(v)| 6 ωi(|u− v|), (6.13)

whereωi is a concave, strictly increasing and continuous function on[0,+∞) with
ωi(0) = 0, then it is sufficient that for smallρ

Ω(ρ) ≡
n
∏

i=1

ωi(ρ) 6 constρn−1; (6.14)
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i.e., the restriction (6.13)–(6.14) ensures the uniqueness of a generalized entropy solu-
tion to a Cauchy problem for equation (6.11).

Further, let us stress that for the equation

ut +
( |u|α

α

)

x
+
( |u|β

β

)

y
= 0, 0< α < β < 1,

the restriction (6.14) (which, for this concrete case, takes the formα+ β > 1), is both
necessary and sufficient for the uniqueness of a generalized entropy solution to the
Cauchy problem with general initial datum. The corresponding counterexample was
constructed by E. Yu. Panov (see, e.g., [28]).

Notice that in the casen = 1 the condition (6.14) imposes no restriction at all on
the merely continuous flux functionf = f(u): in the one-dimensional situation, a
generalized entropy solution to the Cauchy problem is always unique.

Also notice that in the work [28] a rather simple proof of the uniqueness ofa gener-
alized entropy solutions is given under the assumptionΩ(ρ)/ρn−1 → 0 asρ → 0 that
is slightly stronger than (6.14).

In conclusion, let us say that the nonlocal theory of first-order quasilinear conserva-
tion laws, whose rigorous mathematical treatment started in the 1950th, is yet actively
developing. Many interesting problems remain unsolved, even for the one-dimensional
equation (6.10). But most topical and interesting are the problems of conservation
laws in the vector case, even for the simplest situations. Indeed, let us consider the
well-known “wave equation” system

{

ut − vx = 0,
vt − ux = 0.

This system was the very first object of research in PDEs (then called “mathematical
physics”), in the works of D’Alembert and Euler. In order to take into account certain
nonlinear dependencies in the process of wave propagation considered, one replaces the
linear expressionvx in the first equation by the nonlinear expression(p(v))x, wherep
is a function withp′(v) > 0. In this case, there arises the so-called “p-system”, which
is well-known in the theory of hyperbolic systems of conservation laws:

{

ut − (p(v))x = 0,
vt − ux = 0.

This system is another simple (although more complex than the Hopf equation(1.1))
but important model in the field of gas dynamics. Alas, nowadays, whatever be the
non-linearityp = p(v), nobody in the entire world knows how to define the “correct”
entropy solution of this problem.

Thus a slightest nonlinear perturbation of a simple linear system results in anex-
tremely difficult unsolved problem9 in the field of nonlinear analysis.

9NT — These are words of S. N. Kruzhkov, spoken out in 1997 shortlybefore his passing away. Since then,
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Hopefully, the topical, simple-to-formulate, both “natural” and difficult field of non-
local theory of quasilinear conservation laws will yet attract the attention ofyoung,
deep-thinking researchers, able to invent new approaches away from the traditional
guidelines.
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space dimension, has been given in the works of A. Bressan and collaborators (see [11]). These results, and
the methods developed to achieve the results, represent a breakthrough in the theory of systems of conservation
laws, a breakthrough that occurred more than thirty-five years after the pioneering works of S. N. Kruzhkov
establishing the notion of entropy solution for the case of one scalar equation.

Yet the most important case for the applications, the one of multi-dimensional systems of conservation laws,
remains very far from being solved. We can simply repeat S. N. Kruzhkov’s words, saying that nowadays, in
2008, nobody in the entire world knows how to define the “correct” notion of solution for this problem!

For the case (also discussed in the above Afterword) of a general merely continuous (but not necessarily
Lipschitz, nor Hölder continuous) vector flux functionf = f(u), in spite of some further progress (see [2, 5,
42]), a difficult open question persists: whether or not there is uniqueness of a generalized entropy solution in
L∞(0, T ; L1(Rn)) ∩ L∞(ΠT ) without any additional restriction (such as (6.13)–(6.14)) on the flux function
f = f(u).

Let us mention, without any tentative of exhaustivity, that in the last fifteen years progress has been achieved:
on the study of boundary-value problems for conservation laws (see, e.g., [35, 38]), on the numerical approxima-
tion of entropy solutions (see, e.g., [8, 22]), on the study of fine properties of general (not necessarily piecewise
smooth, see, e.g., [24])) entropy solutions using methods of geometric measure theory (see, e.g., [15]) and the
new tools of kinetic solutions (see, e.g., [9, 10, 19, 34, 43,45, 47, 51]) and parameterized families ofH-measures
(see [40, 41, 46]), on the study of linear problems with irregular coefficients (see, e.g., [1]), on the convergence
of the vanishing viscosity method (see [7]), on the study of stability of shock waves, on various generalizations
of conservation law (6.10) including nonlocal problems, problems with oscillating or discontinuous in(t, x)
coefficients, stochastic problems, problems on manifolds, on the related degenerated diffusion problems (see,
e.g., [12, 13, 4]), on the study of singular solutions (see, e.g., [44]), of unbounded solutions (see, e.g., [21, 42]),
and on the related new notion of renormalized solution (see [6]). Even a theory of “non-Kruzhkov” solutions to
conservation laws was constructed (see [33]), stimulated byphysical models with a specific notion of admissi-
bility. Much of the above progress was inspired by “physical” considerations and by the investigation of applied
problems.

Thus, although the above Afterword does not reflect the most recent challenges in the theory of first-order
quasilinear PDEs, S. N. Kruzhkov’s words sound as topical asever. And it is certain that, after ten more years,
the present footnote will look somewhat obsolete with respect to the new front of research.
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the authors would simply be unable to survey. The authors do not belong tothe scien-
tific school of S. N. Kruzhkov, but are rather his colleagues who havecollaborated with
S. N. Kruzhkov on the task of creating and promoting the present course of lectures as
a new element of the mathematical education at the Moscow Lomonosov State Uni-
versity. Their scientific interests lie in connected, but yet different branches of PDEs
with respect to the subject of the lectures. On the contrary, Boris Andreianov learned
the subject directly from S. N. Kruzhkov as a student and as a Ph.D. student. Now he
continues to work in the field of the first-order quasilinear PDEs. His contribution to
the preparation of the present edition is extremely valuable.

Translated from the Russian manuscript
by Boris P. Andreianov (Besançon)
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