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S. N. Kruzhkov's lectures
on first-order quasilinear PDEs

Gregory A. Chechkin and Andrey Yu. Goritsky

Abstract. The present contribution originates from short notes intended to a@ontipe lectures of
Professor Stanislav Nikadlevich Kruzhkov given for the students of the Moscow State Lomonosov
University during the years 1994-1997. Since then, they were edrichenany exercises which
should allow the reader to assimilate more easily the contents of the lecturés appropriate the
fundamental techniques. This text is prepared for graduate studedysng PDES, but the exposi-
tion is elementary, and no previous knowledge of PDEs is required. &@nhanand of basic analysis
and ODE tools is needed. The text can also be used as an exercise book.

The lectures provide an exposition of the nonlocal theory of quasilireréiapdifferential equa-
tions of first order, also called conservation laws. According to S. MzKkkov’s “ideology”, much
attention is paid to the motivation (from both the mathematical viewpoint andbtiitext of applica-
tions) of each step in the development of the theory. Also the historicala@went of the subject
is reflected in these notes.

We consider questions of local existence of smooth solutions to Cauchieprs for linear and
quasilinear equations. We expose a detailed theory of discontinuoussekdions to quasilinear
equations with one spatial variable. We derive the Rankine—Hugoniditamm motivate in various
ways admissibility conditions for generalized (weak) solutions and relataediméssibility issue to
the notions of entropy and of energy. We pay special attention to the tiesobf the so-called
Riemann problem. The lectures contain many original problems andisesr many aspects of the
theory are explained by means of examples. The text is completed lieanad showing that the
theory of conservation laws is yet full of challenging questions and awaiinnew ideag.

Keywords. PDE, first-order quasilinear PDE, characteristics, generalized salstioek wave, rar-
efaction wave, admissibility condition, entropy, Riemann problem.

AMS classification.35F20, 35F25, 35L65.

ONote added by the translator (NF)} The authors, the translator and the editors made an effqriouce
a readable English text while preserving the flavour of S. Kuzkkov’s expression and his original way of
teaching. The reading of the lectures will surely requiraseffort (for instance, many comments and precisions
are given in parentheses). In some cases, we kept the orfgirsaian” terminology (usually accompanied by
footnote remarks), either because it does not have an exastéw” counterpart, or because it was much used
in the founding works of the Soviet researchers, includinty Kruzhkov himself.

We hope that the reader will be recompensed for her or histéffothe vivacity of the exposition and by the
originality of the approach. Indeed, while at the mid-199@thly few treaties on the subject of conservation
laws were available (see [20, 48, 49]), the situation chdrgenpletely in the last ten years. The textbooks and
monographs [11, 14, 22, 32, 33, 35, 47] are mainly concernddasitservation laws and systems. With respect
to the material covered, the present notes can be comparethwitfitroductory chapters of [11, 22, 33] and with
the relevant chapters of the already classical PDE textfig]k Yet in the present lecture notes the exposition is
quite different, with a strong emphasis on examples and mativaf the theory.
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Introduction

The study of first-order partial differential equations is almost as ahe®the notion
of the patrtial derivative. PDEs of first order appear in many meichhand geometri-
cal problems, due to the physical meaning of the notion of derivativev@hocity of
motion) and to its geometrical meaning (the tangent of the angle). Loaahtbésuch
equations was born in the 18th century.

In many problems of this type one of the variables is the time variable, acegses
can last for a sufficiently long time. During this period, some singularitiedasfsical
solutions can appear. Among these singularities, we consider only weaktnuities
(which are jumps of derivatives of the solution) and strong discontinuitiasch are
jumps of the solutions themselves). We do not deal with the “blow up”-timpgutari-
ties.

It is clear that after the singularities have appeared, in order to giveaainge
to the equation under consideration one has to define weak derivatigesemk so-
lutions. These notions were introduced into mathematical language only R0the
century. The first mathematical realization of this “ideology” was the tlakpaper
of E. Hopf [23] (1950). In this paper, a nonlocal theory for the Gauproblem was
constructed for the equation

u + (u?/2) =0 (0.1)
with initial datum
u|t:0 = up(z), (0.2)
whereuo(x) is an arbitrary bounded measurable function. The equation
us + (f(u)), =0 (0.3)

is a natural generalization of equation (0.1). Important results for dhénal theory
of this equation were obtained (in the chronological order of the papgi®) A. Ola-

nik [36, 37], A. N. Tikhonov, A. A. Samarski50], P. D. Lax [31], O. A. Lady-
zhenskaya [29], I. M. Gel'fand [18].The most complete theory of the Cauchy prob-
lem (0.3), (0.2) in the space of bounded measurable functions wasvad in the
papers by S. N. Kruzhkov [25, 26] (see also [27]).

1 Derivation of the equations

The Hopf equation. Consider a one-dimensional medium consisting of particles
moving without interaction in the absence of external forces. Denote(by) the
velocity of the particle located at the pointat the time instant. If z = (¢) is the

This is a beginner’s course on conservation laws; in a seéns@ps just where the modern theory begins,
before advanced analysis techniques enter the stage. iffeeifoeading, we refer to any of the above textbooks.
INT — Throughout the lectures, no attempt is made to give a compteteuat on the works on the subject
of first-order quasilinear equations; the above referemegs those that most influenced S. N. Kruzhkov's work.
2NT — Also should be mentioned the contribution by A. I. VoI'pes2], who constructed a complete well-
posedness theory in the smaller cl@g of all functions of bounded variation. As shown in [52], tblass is a
convenient generalization of the class of piecewise smawotttions widely used in the present lectures.
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trajectory of a fixed particle, then the velocity of this particlei$) = u(t, ¢(t)), and
the acceleratiorp(?) is equal to zero for all. Hence,

o d Ou Ou. Ou OJu
Bl AC e T L TR P
The obtained equation
ug + uug, = 0, (1.1
which describes the velocity field of non-interacting particles, is called the Hopf
equation.

The continuity (or mass conservation) equation. This equation, usually presented

in a course on the mechanics of solids, describes the movement of éfligdid or a
gas) inR" if there are no sinks nor sources. Denote the velocity vector of the fluid by
v(z,t) = (v1,...,v,) and its density by(z,t). Let us fix a domairi” c R". At the
momentt, the mass of the fluid contained in this domain is equal to

My (t) = /V pl(z,t) da

this mass is changing with the ra#d/, /dt. On the other hand, in the absence of
sources and sinks insidé, the change of mask/y, is only due to movements of the
fluid through the bounda@V of the domain, i.e., the rate of change of the melss(¢)

is equal to the flux of the fluid throughv:

Here (v, v) is the scalar product of the velocity vectoand the outward unit normal
vectory to the boundaryV at the pointz € 9V; dS,. is an element of area ai/.
Hence, we have

i), plx,t)de = — /av (v(z,t),v) - p(x,t)dS,. (1.2)

Under the assumption thatandv are sufficiently smooth, we rewrite the right-hand
side of the formula (1.2) with the help of the divergence theorem (thes&&treen
formula), i.e., using the fact that the integral of the divergence awdmain is equal
to the flux through the boundary of this domain:

0 g — iv(pv) dx
/‘/Edaj— /lev(p ) dz. (1.3)

Here div is the divergence operator with respect to the spatial varidl#ésis remind
that the divergence of the vector fiel@z) = (a,...,a,) € R™ is the scalar

diva = (ag)s, + -+ (an)s, -
Since the domair’ ¢ R™ is arbitrary, using (1.3) we get the so-called continuity
equation, well-known in hydrodynamics:
dp

% + div(pv) = 0. (1.4)
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Equation of fluid infiltration through sand.  For the sake of simplicity, we introduce
several natural assumptions. Suppose that the fluid moves undeletecton of the
gravity, i.e., the direction of the movement is vertical and there is norakp®e on
horizontal coordinates. Neither sources nor sinks are presentpéed of infiltration
v is a function of the density = u(t,z), i.e.,v = v(u).

It is experimentally verified that the dependende) has a form as in Figure 1.
On the segmenD, up] one can assume that the dependence is almost parabolic, i.e.,
v(u) = Cu?.

v(u)

0 U, u

Figure 1. Experimental dependence= v(u).

In the one-dimensional case under consideration, the equation (.8 wewrit-
ten as follows :
ug(t,x) + [u(t,z) - v (u(t,x))], =0, (1.5)
or
ur + p(u)u, =0, where p(u) =v(u) + v'(u)u.

Keeping in mind the experimental dependence of the speed of infiltratidimeoden-
sity, we assume that(v) = »?/3, and finally we get

ug + ulu, = 0.

The traffic equation. This equation can also be derived from the one-dimensional
(in z) continuity equation (1.4). In traffic problems(¢, x) represents the density of
cars on the road (at pointat timet); and the dependence of the velocitpf cars on
the densityu is linear:

v(u) =C — ku, C, k = const> 0.
In this case, equation (1.5) reads as follows:

uy + (Cu — ku?), = 0.



The Kruzhkov lectures 5

2 The local classical theory

First order PDEs can be solved locally by means of methods of the tbéordinary
differential equations, using the so-calledaracteristic system From the physical
point of view this fact can be considered as an expression of the duélite avave
theory and the particle theory of media. The field satisfies a PDE of faisrpand the
behaviour of the particles constituting the field is described by a system BEOThe
connection between the first-order PDE and the corresponding sys@DEs allows
to study the behaviour of particles instead of studying the evolution of waves

It should be noted that the majority of questions in this chapter are coadider
the textbooks on ODEs (for instance, [3, Chapter 2]). Different@ses on linear and
quasilinear equations of first order can be found in [17, §20].

Below we remind basic notions of the aforementioned local theory forrdiaed
quasilinear equations.

2.1 Linear equations

Letv = v(x) be a smooth vector field in a domahc R™.
Definition 2.1. The equation

ou ou
Ly[u] = vl(a:)a—xl +--- vn(x)% =0. (2.1)

is said to be dinear homogeneouBDE of first-order.

A continuously differentiable function = (z) is calledclassicalsolution of this
equation ify satisfies the equation at any point of its domain.

Recall that in the ODE theory, the operafar = vy 2~ + - - - + v, 32— is called the
derivation operator along the vector field Geometrica]lly, equation (2.1) means that
the gradienVu = (%, .., 2% of the unknown function, = u(x) is orthogonal to
the vector field in all points of the domai.

A smooth functionu = u(z) is a solution of the equation (2.1) if and onlyifis
constant along the phase curves of the figlde., it is the first integral of the system

of equations

i‘l = Ul(xla'”axn)7
i‘z = vz(xl,...,xn)7 (2 2)
Ty = vp(x1,...,20).

The system (2.2), which can be written in vector forme= v(z), is calledthe charac-
teristic system of the linear equati¢®.1). A solution of the characteristic system is
calleda characteristic the vector fieldy = v(z) over then-dimensional space af is
calledthe characteristic vector field of the linear equation

Definition 2.2. A linear inhomogeneoufirst-order PDE is the equation
L,[u] = f(2), (2.3)
wheref = f(z) is a given function.
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Equation (2.3) expresses the fact that if we move along the charéicteris x(t)
(i.e., along the solution: = z(t) of the system (2.2)), thea(z()) is changing with
the given speed(z(¢)). Thus, in the case of an inhomogeneous linear equation, the
characteristic system (2.2) should be supplemented with the additioreti@yonu:

uw= f(z1,...,%). (2.4)

2.2 The Cauchy problem

Definition 2.3. The Cauchy problenfior a first-order partial differential equation is the
problem of finding the solution = w(z) of this equation satisfying the initial condition
ul, = uo(x), (2.5)

wherey ¢ R”, dimy = n — 1, is a fixed smooth hypersurface in thespace, and
up = up(z) is a given smooth function defined en

In order to solve the Cauchy problem (2.1), (2.5) for a linear homegas equa-
tion, it is sufficient to continue the functiar{x) from the surface along the character-
isticsz(¢) by a constant. In the case of the problem (2.3), (2.5) for the inhonemges
equation, the initial data should be extrapolated according to the law (2.4).

Note two important features of the Cauchy problem, specified above.

\+/
\§_//

Xo

V(Xo)

Y

Figure 2. Example of a characteristic point.

Remark 2.4.The Cauchy problem is set locally (i.e., in a neighbourhood of a pgint
on~). Otherwise, as it can be seen in Figure 2, characteristics passinglhaayiven
pointz may crossy twice (or even several times), carrying different values & this
point. Thus the solution to the problem (2.1), (2.5) exists only for specsallgcted
initial datauo.

Moreover, it can happen that the set of all the characteristics whiah d@vmon
points with the initial surface do not cover the whole domain where we want to solve
the Cauchy problem. In this case, we have no uniqueness of a solutiosn @atlichy
problem.
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Remark 2.5.1f in the pointz € ~ the vectoru(zg) is parallel to the surface (such
points zo are calledcharacteristic pointssee Figure 2), then, even choosing a very
small neighbourhood of this point, we cannot guarantee that we sh&lame the same
difficulties as we mentioned in Remark 2.4. Hence, the existence and itgeness

of a solution to a Cauchy problem can be guaranteed only in a neightozlidfa
non-characteristic point on

Linear first-order PDEs can be impossible to solve in a neighbourhoadoérac-
teristic point even in the case when each characteristic has exactly onepiviter-
section with the initial surface.

Example 2.6.Consider the following Cauchy problem:
ou

or u|y=w3
The characteristic vector field is the constant fig€ld0), the characteristics are the
straight linesy = C; each of them has only one intersection point with the curve
v = {(z,y) | y = 2%}. If we extend the initial functiomo(z) = 22 (which is equal to
y%/3 on~) so that it is constant along the characteristics, we get{inglependent “so-
lution” u(z, y) = ¥ which is not a classical solution because it is not a continuously
differentiable function on the ling = 0.

The possible objection that, nevertheless, the function constructed baseepar-
tial derivative with respect to (and hence satisfies the equation in the classical sense)
is easy to remove. It is sufficient to change the variables in problemd2ddrding to
the formulaxz = =’ + v/, y = 2’ — 3. After this rotation and rescaling on the axes, we
obtain the following Cauchy problem:

=22 (2.6)

74_7:0’ u|’Y:(I/+y/)2’

the curvey being defined by the equatiori — 4/ = (2’ + y')%. The transformed
“solution” u(z',y') = (¢' — y’)2/3 has no partial derivatives i¥ nor iny’ on the line
' —y =0.

2.3 Quasilinear equations

Definition 2.7. The equation
ou ou
(o[t = vale ) () 5 = f() (2.7)
is called aguasilinearfirst-order PDE. If in the equation (2.7) all the coefficientsaire
independent of:, i.e.,v; = v;(z), then the PDE is callesemilinear

As for the linear equation, we write down the system (2.2), (2.4):
il = 'Ul(x]_,-..,xn,u),

(2.8)

i‘n = ’Un(xlv“-amnau)a

u = f(x1,...,2Tn,u).
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This system is called theharacteristic system of the quasilinear equat{@rv); solu-
tions (z,u) = (z(t),u(t)) € R"*! to the system (2.8) are calletiaracteristicsof this
equation; acharacteristic vector field of a quasilinear equati¢h?) is a smooth vec-
tor field with component$vs (z, u), . .., va (2, u), f(z,u)) in the (n + 1)-dimensional
space with coordinatgss, . . ., <, u).

Remark 2.8.1f a linear equation is considered as being quasilinear, and also in the
case of a semilinear equation, the projectiopy . .., v,) on thez-space of the vector
(v1,...,vn, f) in the point(zo,up) does not depend omy, since the coefficients;

do not depend om. Hence in these cases the projections onstfspace of the cha-
racteristics that lie at “different heights” coincide (here we mean thatehtcal axis
represents the variablg.

If the smooth hypersurfack/ ¢ R"*! is the graph of a functiom = u(z), then
the normal vector to this surface in the coordinates:) has the form(V,u, —1) =
(Ou/dx1,...,0u/dz,, —1). Therefore, geometrically, the equation (2.7) expresses the
orthogonality of the characteristic vectef(x, u), f(x,«)) and the normal vector tdf .
Thus, we have the following theorem.

Theorem 2.9.A smooth functiont = w(x) is a solution to the equatio(R.7) if and
only if the graphM = {(z, u(x))}, which is a hypersurface in the spaké*?, is tan-
gent, in all its points, to the characteristic vector fild, . . ., v,, f).

Corollary 2.10. The graph of any solution = u(x) to the equatior(2.7) is spanned
by characteristics.

Indeed, by definition, the characteristiest), u(t)) are tangent to the characteristic
vector field(see(2.8)); therefore any characteristics having a point in common with
the graph ofu lies entirely on this graph. (Here and in the sequel, we always assume
that the characteristic system complies with the assumptions of the standaehee
and uniqueness theorems of the theory of ODES.)

For the case of a quasilinear equation, the Cauchy problem (2.7)céhbe solved
geometrically as follows. Let

M= {(z,uo(x)) | x € v} c R*" dmlrh=n -1,

be the graph of the initial functiomy = ug(x). Issuing a characteristic from each point
of I', we obtain some surface of codimension one. Below we show that, whenever
the point(zo, uo(zo)) is non-characteristic, at least locally (in some neighbourhood of
the point(zo, uo(zo)) € I') the hypersurfacé/ represents the graph of the unknown
solutionu = u(zx).

Definition 2.11.A point (zo,ug) € T is calleda characteristic pointif the vector
v(xo, up) IS tangent toy at this point.

Remark 2.12.In the case of a quasilinear equation, one does not ask whether a point
xo € v C R™ is a characteristic point. Indeed, the characteristic vector field also
depends on. In this case, one should ask whether a paigt uo(zo)) € I € R**1is

a characteristic point.
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If (zo,u0(wo)) € I is @ non-characteristic point, then the hyperpl@ngngent to
M at this point projects isomorphically onto thespace. Indeed, the hyperplahas
spanned by the directions tangenft¢their projections span the hyperplanéiif tan-
gent toy) and by the characteristic vect@r(zo, uo(zo)), f(xo, uo(z0))) (its projection
is the vectow (o, ug(zo)) transversal tey). Consequently, locally in a neighbourhood
of the point(zo, uo(xo)) € I, the hypersurfacé/ constructed above represents the
graph of a smooth function = u(x), which is the desired solution.

3 Classical (smooth) solutions of the Cauchy problem and
formation of singularities

3.1 Quasilinear equations with one space variable

In the sequel, we will always consider the following equation in the unknfumo-
tion v = u(t,r) depending on two variables has the meaning of time, ande R?
represents the one-dimensional space coordinate):

ue+ (f(u), = ue + f'(wu, = 0. 3.1

Heref € C?is a given function, which will be called tH&ux function The initial data
is prescribed at time= 0:

u!t:O =u(0,z) = uo(z). (3.2)

In this section, we investigate the possibility to construct solutions of the proble
(3.1)—(3.2) within the class of smooth functions defined in the strip

My ={(t,z) | —0o < < 400, 0 <t <T}.

Let us apply the results of the general theory, as exposed above, totitiete case.
We see that the equation (3.1) is quasilinear; for this case, the ch@tctsys-
tem (2.8) takes the form

i = 1,
z = f'(u), (3.3)
u = 0.

The first equation in system (3.3) together with the initial conditi@) = 0 (we
take this condition because of (3.2)) means exactly the following: the @mdkgmnt
variable in system (3.3) (the differentiation with respect to this variablenstée by
a dot (")) coincides with the time variableof the equation (3.1). Thus it is natural
to exclude the first equation from the characteristic system (3.3) as=aigth the
Cauchy problem (3.1)—(3.2).

In the case considered, the initial curyec Rfﬂ is the straight ling = 0, i.e.,

v ={(t,z) | t = 0}, and the curv& € R}  is the set of points

t,x,u

MN={(t,z,u) |t=0, x =y, u=1uo(y)},
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parameterized by the space variaplé_et us stress that in this case, all the point§ of
are non-characteristic, since the vedtot:) = (1, f'(u)) is transversal tg = {t = 0}.

Thus in our case, we can rewrite the characteristic system (3.3) (withitia diata
corresponding to (3.2)) in the form

r = f(u), 20 =y
{ u = 0, u(0) = wo(y). (34)

Solutions of this system (i.e., the characteristics of equation (3.1)) eriight lines

u=ug(y), ==y+ f(uoly))t (3.5)

in the three-dimensional space of poiftse, u).

As was pointed out in Section 2.3, the graph of the solutioa w(t, z) of prob-
lem (3.1)—(3.2) is the union of the characteristics issued from the pdinke anitial
curvel; thus, the graph of consists of the straight lines (3.5). Therefore, the solution
of problem (3.1)—(3.2) at different time instarits- 0 (i.e., the sections of the graph
of the solutionu = u(t, z) of this problem by different hyperplanes= const) can be
constructed as follows. The graph of the initial function= u(z) should be trans-
formed by displacing each poifit, «) of this graph horizontally (i.e., in the direction
of the z-axis) with the speed’(u). If f'(u) = 0 then the pointz,«) does not move.
If f'(u) > 0, then the point moves to the right; and, the gregtéu) is, the quicker it
moves. Similarly, in the casg(u) < 0, the point(z, u) moves to the left (see Fig. 3).

u u -

\

[N
IECINN 7S
Figure 3. Evolution from initial graph.

Remark 3.1.Assume that the graph of the initial functiep = uo(z) delimits a finite
area (this is the case, for instance, whghas finite support). Then the aforementioned
transformation of the graph leaves the area invariant. Indeed, all thisjpdthe graph
of ug lying on the same horizonal line move with the same speed; consequeatly, th
lengths of the horizontal segments joining the points of the graph remalranged.

The fact that the area under the graph remains constant can alsddiedtby
a direct calculation. Lef(t) = ff;o u(t, z) dz be the area in question, i.e., the area
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delimited by the graph af = u(¢, =) of problem (3.1)—(3.2) (here> 0 is fixed). Then

r=-+00

;tS( b = /m wp(t z) dz = — /M (Flult, ), de = —f (ult, )

= f(0) - f(0) =0,

which means thaf(¢) = const.

While the graph of the solution evolves as described above, at a certaimemho
T > 0 it may happen that the transformed curve ceases to represeniafite afra
smooth function(T, =) of variablez.

Consider, for instance, the Hopf equation, i.e., the equation (3.1)fMith= u?/2.
This equation describes the evolution of the velocity field of a medium corgsisfin
non-interacting particles (see Section 1). Each particle moves in abskfocees and
thus conserves its initial speed.

Consider two particles located, at the initial instast 0, at pointsr; andx, with
x1 < xp. If the initial velocity distributionug = ug(x) is a monotone non-decreasing
function, then the initial velocityo (1) of the first particle (which is its velocity for all
subsequent instants of time) is less than or equal to the velagity) of the second
particle:ug(z1) < up(x2). Since also the initial locations of the two particles obey the
inequalityx; < x», at any time instant > 0 the two particles will never occupy the
same space location; i.e., no particle collision happens in this case.

On the contrary, if the initial velocity distributiony = uo(z) is not a monotone
non-decreasing function, then the quicker particles will overtake theeslones (or,
possibly, particles can move towards each other), and at some ifistaift collisions
should occur. Starting from this time instantour model does not reflect the physical
reality any more, because the particles “passing through each othmrldsimteract
(collide) in one way or another. Mathematically, such interaction is usuatiyuated
for by adding a term of the formu,.,. onto the right-hand side of equation (3.1), where
e > 0 has the meaning of a viscosity coefficient. We will encounter this model in
Section 5.2.

Exercise 3.1For the Hopf equation, represent approximatively the velocity distribu-
tion v = u(t,x) at different time instants > 0, if the initial velocity distribution is
given by the function

(i) wo(x) = arctanz,

(i) uo(z) = — arctan,
(iii) wo(xz) = sinz,
(iv) uo(z) = —sinz,
(V) uo(z) =

(z) =

(Vi) up(x
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For the initial data prescribed above, find the maximal time ins@&nt O such that a
smooth solution of the Cauchy problem (for the Hopf equation)

up 4+ uuy =0, u|t:0 = ug(x),
exists in the striplr = {(t,z) |0 <t < T, z € R}.

Exercise 3.2 Represent approximatively the sections of the graph of the solution of the
Cauchy problem

us + (f(u)), =0, u|t:O:uo(x),
at different time instants > O for

(i) f(u)=cosu, wup(z)=uz,
(i) f(u)=cosu, wp(z)=sinz,
(i) f(u) =u%/3, wo(zx)=sinz.

3.2 Reduction of the Cauchy problem to an implicit functiond equation

One can solve the Cauchy problem for the quasilinear equation (3.tjlgimmaking
no reference to the local theory of first-order quasilinear PDEs expalsove. This is
the goal of the present section.

Assume that we already have a smooth solutioa u(t, z) of the problem (3.1)—
(3.2) under consideration.

Proposition 3.2.The functionu = u(t, x) is constant along the integral curves of the
ordinary differential equation
de
o =t 2)). (3.6)
Proof. Differentiate the function. = w(¢,z) in the direction of the integral curves
(t,z(t)) of equation (3.6):
du  Ou  Ou dx , - -
E_ad‘_%.g_ut_Fuw.f(u)_ut—i_(f(u))w_o' o
As u remains constant along these integral curves, it follows that the solufons
(3.6) are the linear functions= f’(u)t+C1. (The straight lines— f’(u)t = Cy, lying
in the hyperplanes = C5, are exactly the characteristics of the quasilinear equation
(3.1))
Consequently, the valug(to, zo) of the solutionu = w(t, =) at the point(tg, zo) is
conserved along the whole line

xr — fl (u(to, CLQ)) t=C=uxp— f/ (u(to, xo)) - to. (37)

Extending this line until it intersects theaxis at some point0, yo), we take the value
uo(yo) at this point. Since the poin©, yo) lies on the straight line (3.7), we have
yo=x0 — [’ (u(to7 Io)) -to. Thus,

u(to, x0) = uo(yo) = uo (zo — [’ (u(to, x0)) - to) -
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As the point(to, o) is arbitrary, we obtain the following identity for the solutierof
the Cauchy problem (3.1)—(3.2):

u=ug (z— f'(u)t). (3.8)

Thus, the problem of finding the domain into which the solutioe= u(¢, z) of
(3.1)—(3.2) can be extended amounts to finding the domain wherdi@y(@.8) with
the unknowru, has one and only one solution.

Remark 3.3.Formula (3.8) can also be obtained while solving practically the Cauchy
problem for the quasilinear equation, according to [17, §20]. Theacheristic system

dt dx du

1 fw 0
associated with the equation (3.1) possesses two first integrals:
Li(t,z,u) = u, L(t,z,u) =2 — f'(u)t. (3.9)
On the initial curvel = {(0,y,uo(y))} € R}, ,, these two first integrals take the
values
Il|r:u0(y)7 IZ‘F =Y.

Consequentlyl; andl, are linked ol by the relation
I = ug(L). (3.10)

The first integrals remain constant on the characteristics (i.e., on thgrahmurves

of the characteristic system). Thus, relation (3.10) remains valid omathcteristics
issued from the surfade It remains to notice that, upon substituting (3.9) into (3.10),
we get exactly the equation (3.8).

On the other hand, the Cauchy problem (3.1)—(3.2) can be solvextéyding the
solutionu = u(t, =) from the initial point(0, ) by the constant value (the valug(y)
of the solution at this initial point) along the line

z— f'(uo(y)) -t =C=y— f (uo(y))-0=1y, (3.11)

that is, by setting.(¢,z) = uo(y) for all = and¢ which satisfy (3.11). Expressing the
variabley in equation (3.11) through and¢, we get a functiony = y(¢, x); conse-
quently,

u(t,z) = uo (y(t,z)). (3.12)

In this case, extending the solution is reduced to the problem of finding thaidan
which equation (3.11), witly for the unknown, can be solved in a unique way.
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3.3 Condition for existence of a smooth solution in a strip

Let us find the maximal value among all time instafits- O for which equation (3.8)
determines a smooth solutian= «(t, ) in the stripM. In fact, we have to determine
the greatest possible value Bfsuch that the equation

®(t,z,u) =u—up(z — f'(u)t) =0, (3.13)

with unknownu, has a unique solution for all fixedin the interval[0,7") and all
x € R. Fort = 0, the function® = ®(0, z, ») is monotone increasing in. Thus, by
the implicit function theorem the time instéfitin question is restricted by the relation

®,(u,z,t) =1+ ug(z — f(u)t) - f"(u) -t >0 (3.14)

for all points(t, z, u) such tha(¢, z,u) = 0 andt € [0, T)).

If |f”(u)] < L on the range of the functiom = uo(x), and if, in addition,|ug| <
K, then (3.14) is certainly satisfied whenever KL -t > 0. Therefore, there exists a
smooth solution of problem (3.1)—(3.2) in the strip

1
0<t< —.
<< 7
Problem 3.1.Show that if the functions, and /" keep constant signg.e., the func-
tion up is monotone, and the functighis either convex or concayend if the two
signs coincide, then a smooth solutier- u(t, x) exists in the whole half-space> 0.

Starting from inequality (3.14), we can also obtain the exact value of thxénmaa
time instantl” which delimits the time interval of existence of a smooth solution. To do
this, denotey = = — f’(u)t and notice that. = uo(y) because of (3.13). Then (3.14)
is rewritten as

1+ug(y) - f"(uo(y)) -t > 0.

Hence, L L
D= Tt ) o)) — it ) (3.15)

YyER yeR

if only the above infimum is negative. Otherwise, if jak [ug(y) f” (uo(y))] = 0, then
T = +oo (see Problem 3.1).

Problem 3.2.Check that a functiom. = (¢, ), which is smooth in a striplr and
which satisfie$3.8), is a solution of the Cauchy problef8.1)—(3.2)

Problem 3.3.Show that the function = u(¢, z) given by(3.12), wherey = y(¢, z) is
a smooth function i, such that(3.11) holds, is a solution to the Cauchy problem
(3.1)—(3.2)

Problem 3.4.Show that the formula&3.8) and (3.12) define the same solution of the
Cauchy problen{3.1)—(3.2)
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Problem 3.5.Show that, whenevenf, cg [ug(y) f” (uo(y))] = —oo, there is no strip
MNr = {(t,z) |0<t< T,z € R}, T > 0, such that a smooth solution to problem
(3.1)—(3.2)exists.

Exercise 3.3Find the maximal valug > 0 for which there exists a smooth solution
to the Cauchy problem

ug + f(u)u, =0, ul,_o = uo(z), (3.16)

in the stripfr = {(¢t,2) |0 <t < T,z € R}, for
() fu) =u?/2,

uo(z) = arctane,

(i) f(u)= / uo(x) = — arctanz,
(i) f(u) = uo(x) =

(iv) f(u): cosu, wup(z) = sinz,

V) f(u) =u®/3, uo(z) = sinz.

Exercise 3.4Which of the Cauchy problems of the fo(#116), with the data pre-
scribed below, admit a smooth solutien= u(¢, z) in the whole half-space> 0, and,
in contrast, which of them do not possess a smooth solution in anystifi’ > O:

() fu) =u?/2, wuolw)=2?
(i) f(u)=u?/2. wo(x) =~
(iii) f(U)Z uo(z) =

(iv) f(u)= uo(z) = —

3.4 Formation of singularities

To fix the ideas, consider the following Cauchy problem for the Hopf egugl.1),
i.e., for the equation of the form (3.1) with(u) = u?/2:

(3.17)

up + uuy, =0, u|t:0 = ugp(x),

the initial datumug being the smooth function given by

2 for x < -3,

() for —3<z< -1,
uo(z) = —x for —1<2<1,
Po(x) for 1<z <3,
-2 for x >3

(see Fig. 4a). Here the functiogig andi, connect, in a smooth way, the two constant
values taken by,p as|x| > 3 with the linear function representing as|z| < 1. While
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Figure 4. Formation of a strong discontinuity.

doing this, we can choosg andi); in such a way that-1 < ¢i(x) < 0,i = 1,2, as
1< z] <3

As we havelyy| < 1 andf” = 1, the results of the previous section imply the
existence of a unique smooth solutien= u(¢,z) to problem (3.17) in the strip &
t < 1. As was shown in Section 3.2, in order to construct this solution one lissu®
the straight line (see (3.11))

z—uo(y) t=y, (3.18)

starting at every poinft, z) = (0,y) of the linet = 0, and one has to assigit, z) =
up(y) at all the pointg¢, z) of this line.

Fory < —3 (fory > 3, respectively) the equation (3.18) determines (see Fig. 4b)
the family of parallel straight lines = 2t + y (or x = —2t + y, respectively). Conse-
quently,

t — 3,

u(t,z)=2 for 0<t<1l =z<2
< 3-2t.

u(t,z)=—-2 for 0<t<l, =z

NN

Further, for|y| < 1 the corresponding straight lines are givenaby yt = y, i.e., by
x =y(1—t); onthese linesy = —y = —z /(1 — t). This means that

u(t,z) =—-z/(1—t) for 0<t<1, |z|<1l-¢
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Ontheset< ¢t <1, 1-1t<|z| <3— 2t we cannot write down an explicit formula
for u = wu(t,x) without defining explicitly the functions);. Nevertheless, we can
guarantee that the straight lines of the form (3.18), correspondingfépetht values
of y from the set—3,—1) U (1, 3), do not intersect inside the strip0t < 1 because
|| < 1 on this set.

Fort = 1, through each poirt, z) = (1, z) with = # 0 there passes one and only
one straight line (3.18), corresponding to some valuéth |y| > 1 (see Fig. 4b). Such
a line carries the value = ug(y) for the solution at the pointl, z). Moreover, if
x — —0, then the corresponding valueptends to—1; and ifx — 40, theny — 1.
Consequently, at the time instant= 1, we obtain a function: — (1, z) which is
smooth forz < 0 and forz > 0, according to the implicit function theorem. As has
been pointed out,

xlriou(l’ z) = yIerzllluo(y) =¥l
As to the point(1, 0), different characteristics bring different valuesuoto this point.
More precisely, all the lines of the form (3.18) witfj < 1 (i.e., the lines: = y(1—-1¢))
pass through this point; each line carries the corresponding vatde-y, so that all
the values contained within the segménl, 1] are brought to the poirtL, 0).

The graph of the function = u(1, z) is depicted in Fig. 4c.

To summarize, starting from a smooth functia(®, =) = uo(z) at the initial instant
of timet = 0, at timet = 1 we obtain the function — «(1, z) which turns out to be
discontinuous at the point = 0. This kind of discontinuity, where(to, zo + 0) #
u(to, zo — 0), is called a strong one. Consequently, we can say that the solution of
problem (3.17) forms atrong discontinuityat the timetg = 1 at the pointzg = O.

For the general problem (3.1)—(3.2), wheneveydaflug(y) f” (uo(y))] is negative
and it is attained on a non-trivial segmént , 3. |, strong discontinuity occurs at the
time instantT” given by (3.15). In this situation, like in the example just analyzed, all
the straight lines (3.11) correspondingut@ [y, y. ] intersect at some poitt’, zo);
they bring different values af to this point.

Problem 3.6.Show that if

uo(y)f"(uo(y)) =1 vy € [y—,y:], where = inf [ug(y)f"(uo(y))], I<0,
then the family of straight line€3.11) corresponding ta, € [y_,y.] crosses at one
point.

Instead of a strong discontinuity, a so-caleak discontinuitymay occur in a
solutionu = wu(t,z) at the time instant’. This term simply means that the function
x — (T, z) is continuous inc, but fails to be differentiable in.

Problem 3.7.Let the infimuml = inf,cr [ug(y) f”(uo(y))] be a negative minimum,
attained at a single poinjo. LetT be given by(3.15). Show that in this situation, the
solutionu = u(¢, z), which is smooth for < T', has a weak discontinuity at the point
(T,yo + f'(uo(yo0))T); in addition, for eacht > T some of the lines given {3.11)
Cross.
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4 Generalized solutions of quasilinear equations

As has been shown in the previous section, whatever the smoothnesdrafith data
is, classical solutions of first-order quasilinear PDEs can developlabitigs as time
grows. Furthermore, in applications one often encounters problemslisitbntinuous
initial data. The nature of the equations we consider (here, the role di#tnaateristics
is important, because they “carry” the information from the initial datumyuehghat
we cannot expect that the initial singularities smooth out automatically for 0.
Therefore, it is necessary to extend the notion of a classical solutioorsjdering so-
called generalized solutions, i.e., solutions lying in classes of functiorshvelontain
functions with discontinuities.

4.1 The notion of generalized solution

There exists a general approach leading to a notion of generalized soliitivas
its origin in the theory of distributions. In this approach, the pointwise difféaé
equation is replaced by an appropriate family of integral identities. Whsnated
to classical (i.e., sufficiently smooth) solutions, these identities are a&quivto the
original differential equation. However the integral identities make sérsa much
wider class of functions. A function satisfying such integral identities isnaftdled a
generalized solutiof.
The approach we will now develop exploits the Green-Gauss formula.

Theorem 4.1(The Green—-Gauss (Ostrogradskauss) formula)l.etQ be a bounded
domain ofR™ with smooth boundar§Q andw € C*(Q). Then

ow
Q (“)xz

dx:/ w €O v, x;) dS,.
0Q

Here coqv, z;) is thei-th component of the outward unit normal vectofthis is the
cosine of the angle formed by the direction of the outward normal vectaftand
the direction of thé-th coordinate axi®z;); and dS,, is the infinitesimal area element
onoQ.

Let us apply Theorem.4 to the functionw = uv, u,v € C1(Q). Passing one of
the terms from the left-hand to the right-hand side, we get the followinglaoyo

Corollary 4.2 (Integration-by-parts formulafor anyu,v € C*(Q),

ou / / ov
v dr = uv CoOq v, x;) dS, — | wu dx. 4.1
Al B A @D

The first term in the right-hand side 64.1) is analogous to the non-integral term
which appears in the well-known one-dimensional integration-by-pamntstfla.

SNT — In the literature, these solutions are most usually calledak” solutions. In the present lectures,
the authors have kept the terminology and the approach of 8rixthkov, designed in order to facilitate the
assimilation of the idea of a weak (generalized) solutiod, tarstress, throughout all the lectures, the distinction
and the connections between the classical solutions argetieralized ones.
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Assume that a function = u(t, z) € C1(Q) is a classical solution of the equation
w4 (f(u))e =0, (4.2)

f € CYR), in some domairQ c R?, e.g., in the striQ = My == {~0 < z <
+o00, 0 < t < T}. This means that substitutingt, z) into equation (4.2), we obtain a
correct identity for all pointgz, «) € Q. Let us multiply this equation by a compactly
supported infinitely differentiable function = (¢, z). Saying thaty is compactly
supported means that= 0 outside of some bounded domairsuch that, in addition,
G C Q. (The space of all compactly supported infinitely differentiable functamg

is denoted byC5°(Q).) Since the functions = u(t,z), f = f(u(t,z)), ¢ = ¢(t,x)
are smooth, we can use the integration-by-parts formula (4.1):

0= /Q [ut + (f(w))]  dtdx = /Gutcp dtdm—l—/G(f(u))zgo dtdx
- / (ucogu,t) + f(u) cow, z))  dS — / (e + f(u)ps) dtda
oG G
= _/Q(ugpt + f(u)p,) didz.

Here we took advantage of the fact that, z) = O for (¢,2) € Q \ G, which is the
case, in particular, foft, z) € 9G.

Consequently, we have obtained the following assertion:=f u (¢, =) is a smooth
solution of equation (4.2) in the domain then

/Q (upr + f(u)ps) dtde =0 Vo € C5°(Q). (4.3)

The relation (4.3) is taken for the definition of a generalized solution (§oras called
a solution in the sense of integral identity or distributional solution) of the tegua
(4.2). A generalized solution of the equation we consider need not tmbeth. But
any classical solution = u(t, z) of equation (4.2) is also its generalized solution.

The converse fact is also easy to establish: if a funatienu(¢, z) is a generalized
solution of equation (4.2) which turns out to be smooth (uebglongs taCt(Q) and
it satisfies (4.3)), then it is also a classical solution of this equation (ibestisuting
it into equation (4.2) yields a correct equality). Indeed, the calculatibngearemain
true when carried out in the reversed order. Moreover, the factthieatontinuous
function[u; + (f(u)).] satisfies

/Q [ur + (f(u))z] @ dtde =0 Vo € C5°(Q)

implies thatu, (¢, z) + [f(u(t,x))], = 0 forall (t,z) € Q.

Problem 4.1.Justify the latter assertion rigorously.
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4.2 The Rankine—Hugoniot condition

Consider a smooth functiom = u(t,z) in a domainQ c R?,, and associate to this
function the vector field’ = (u, f(u)) defined on the same domain. The function
is a classical solution of the equation (4.2) if and only if di¥ O; in turn, the latter
condition means that the flux of the vector fielthrough the boundary of any domain

G c Q equals zero: .
/ (U,v) dS =0 VG C Q. (4.4)
ele

Herev is the outward unit normal vector @, and(v, v) denotes the scalar product
of the vectorgi andv. The identity (4.4) is called conservation law

Now assume we have a piecewise smooth functien u(¢, ) that satisfies equa-
tion (4.2) in a neighbourhood of each of its smoothness points. In thés dasconser-
vation law (4.4) need not hold in general (the fluxdahay be non-zero, if the domain
G contains a curve across whieh= u(¢,z) is discontinuous). We now show that,
nevertheless, for any piecewise smooth generalized solution of eqé&®)risolution
in the sense of the integral identity (4.3)), this important physical law do&k In a
sense, the essential feature of the differential equation (4.2) is tesxghe law (4.4);
and this feature is “inherited” by the generalized formulation (4.3).

The proof amounts to the fact that, on every discontinuity curve, a gkzred
solution satisfies the so-called Rankine—Hugoniot condition. For a pieeanisoth
functionu = w(t, z) that satisfies equation (4.2) in a neighbourhood of each point of
smoothness, this condition is necessary and sufficient foibe a generalized solution
in the sense of the integral identity (4.3). The present section is devatesldeduction
of the aforementioned Rankine—Hugoniot condition.

Letu = u(t, z) be a piecewise smooth generalized solution of equation (4.2) in the
domainQ c R?, i.e., a solution in the sense of the integral identity (4.3). To be specific,
let us assume tha& is divided into two part€)_ andQ, , separated by some curie
(see Fig. 5); we further assume that in each of these two parts, thofunc= u(t, )
is smooth, i.e.u € CHQ_)NCY(Q,), and that there exist one-sided limits andu.,.
of the functionu as one approachésfrom the side ofQ__ and from the side of2.,
respectively.

Consequently, at each poifib, o) € " of the discontinuity curv€, one can define

u_(to,x0) = lim  w(t,z) and wuy(to,z0) = Iim  wu(t, x).
(t,@)—(tg, ) (t,2)—(tg,20)
(t,x)eQ_ (t,z)eQy

Such discontinuities are called discontinuities of the first kind, or stronguliswiities,
or jumps.

Notice thatu = u(¢,z) is a generalized solution of (4.2) in each of the two sub-
domainsQ_ andQ,, in view of the fact thalC3°(Q.) C C§°(Q). Moreover, this
function is smooth iQ_ and Q.. Therefore, according to what has already been
proved, in each of the two subdomains, the functioe= u(¢,z) is a classical solu-
tion of equation (4.2). Let us derive the conditions satisfied:by «(¢, z) along the
discontinuity curvd .
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t

Figure 5. Strong discontinuity (jump).

Proposition 4.3.Assume that the curfecontained within the domaif is represented

by the graph of a smooth functianh= z(¢). Then the piecewise smooth generalized

solutionu = u(t, z) of equation(4.2) satisfies the following condition dn calledthe
Rankine—Hugoniot condition:

dr _ [f(w)] _ fluy) = fu) (4.5)

dt — [u] up —u—

where[u] = uy — u_ is the jump of the function on the discontinuity curvg, and
[£(w)] = f(us) — f(u_) is the jump off = f(u).

Taking into account the relatiodw /dt = — coqv, t)/ coqv, x), wherecoqv, t) and
coqv, z) are the components of the unit normal vectdo the curvel” = {(¢,z(¢))}
(the vector is oriented to point frof_ to Q. ; notice thatcogv, x) # 0), the equal-
ity (4.5) can be rewritten in the equivalent form

[u] coqv,t) + [f(u)] coqv,z) = 0. (4.6)
Definition 4.4. A shock wavés a discontinuous generalized solution of equafi®Q).

Thus we can say that the Rankine—Hugoniot condition (4.5) relates #eel spf
propagation of a shock wave with the flux functign= f(u) and the limit states.,
andu_ of the shock-wave solution = u(t, z).

Proof of Proposition 4.3 Let us prove the formula (4.6). By the definition of a general-

ized solution, for any “test” functiop € Cg°(Q) such thaty(t,z) = 0 for (¢,z) ¢ G,
G C Q, we have

0= / (uge + F(u)ps) dide

[ (et faen) drdot [ (upe+ flu)p) dida.
Q_NnG Q.NG
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The functionsu = u(t, z), f = f(u(t,x)), andy = ¢(t,x) are smooth in the do-
mainsQ_NG andQ . NG. Since these domains are bounded, while integrating on these
domains we can transfer derivatives according to the multi-dimenditegration-by-
parts formula (4.1). Notice that the boundaries of these domains tofisisand of
parts ofdG. The integrals ovedG are equal to zero due to the fact thdt, =) = O for
(t,x) € dG. Thus, we have

0= —/ (o + (F(0))ap) dtda +/ (u_ cosw, 1) + f(u_) cosw, z)) ¢ dS
Q_NnG r

nG

G

[ (wp+ (F)ae) dtdo [ (s OS-1,t) + f(us) cOS-v.2))  dS
QNG

—— [+ ) e dide— [+ (F(w).) o duds

_ Q.

— [ (s = ) 0 t) + () — fu-)) cOsv.2)) .

-
Here we used the fact thatis the outward unit normal vector to the péartof the
boundary of the domaif2_ N G; thus—v is the outward unit normal vector to the part
I" of the boundary of2. N G. As was already mentioned, = u(¢,z) is a classical
solution in both domain® _ andQ., i.e., equation (4.2) holds fdt,z) € Q_ U Q..
Therefore, we have

/r ([u] cosm,t) + [f(u)] cosma)) pdS =0 Ve e C(Q).  (4.7)

Consequently, the equality (4.6) is satisfied at all poiats) € I where the dis-
continuity curvel is smooth (i.e., at the pointg,z) € I where the normal vector
v = (cogr,t),coqv, z)) depends continuously on the pointlof m)

The converse of the statement of the above theorem also holds truseBreet
a functionu = (¢, x) be a classical solution of equation (4.2) in each of the domains
Q_ andQ.. Assume that the function has a discontinuity of the first kind on the
curvel separatind2_ from Q. and that the Rankine—Hugoniot condition holds on the
discontinuity curvd™. Thenu is a generalized solution of equation (4.2) in the domain
Q=Q_ uUlruQ,. Indeed, starting from (4.7) and using the fact that

ur+ (f(u))z =0 for (t,2) e Q_UQy,

we can reverse all the calculations of the above proof. This eventuallg keathe
integral identity (4.3), which is the definition of a generalized solution.

Problem 4.2.Justify rigorously the above statement.

Theorem 4.5.Assume that = u(t, z) is a piecewise smooth functibdefined in a do-
mainQ with a finite number of componertdg, Q.. ..., Q,, whereu is smooth, and, ac-

4NT — Throughout the lectures, the term “piecewise smooth” seéectly to the situation described in
the assumption formulated in the present paragraph. This fwarkes sufficient to illustrate the key ideas
of generalized solutions. In general, there may exist digseoous generalized solutions with a much more
complicated structure, but they are far beyond our scope.
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cordingly, with a finite number of curves of discontinuity of the first Kind 2, ..., %,

so that we have .
o= (Ja)u ()
i=1 i=1

(see Fig.6 which corresponds to the case of a strip dom@ia- M+ ).

The functionu = u(t,z) is a generalized solution of equatigd.2) in the do-
mainQ in the sense of the integral identi$.3) if and only if« is a classical solution
of this equation in a neighbourhood of each smoothness pointicé., on each of the
setsQ;, i = 1,...,m) and, moreover, the Rankine—Hugoniot condit{drb) is satis-
fied on each discontinuity curye, : = 1, ..., k except for the finite number of points
where some of the curv€s intersect one another.

For the proof, it is sufficient to consider the restriction of the functioto each
discontinuity curvel; and the two smoothness componefts, Q,, adjacent td;;
then we can exploit the assertions already shown in Proposition 4.3 anaohile 4.2.

X HT

’\KQS/
> L

Figure 6. Piecewise smooth solution.

Proposition 4.6.Letu = u(t,z) be a piecewise smooth generalized solution of equa-
tion (4.2) in the domainQ in the sense of the integral identi¢¢.3). Then the vector
fieldv = (u, f(u)) satisfies the conservation lai.4).

Proof. Assume thaf2; are the components of smoothness.of et G be an arbitrary
subdomain of the domaf. For all4, the flux of the vector field = (u, f(u)) through
0(Q; N G) is equal to zero, becauseis a classical solution of equation (4.2) in the
subdomainQ; and thus also in the subdomdy N G. Therefore, we can represent
zero as the sum of these fluxes over all bounddtrigs; N G). Thanks to the Rankine—
Hugoniot condition (4.6), on each discontinuity cufvgthe total flux (i.e., the sum
of the fluxes from the two sides 6f;) of the vector fields across the curvé; N G is
equal to zero. Consequently, the sum of the fluxes across all the &gesitl( Q; N G)

is equal to the flux of the vector fieldthroughoG. This proves (4.4). O

As has been mentioned in Remark 3.1, the area delimited by the grapleséaal
solutionu = u(t, z) of the problem (3.1)—(3.2) remains constant as a function of time
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t > 0, whenever this area is finite. It turns out that also the generalized seuilmey

this property. Thus the process of formation of a shock wave (a gsabat can be
visualized as an “overturning” of the graph) occurs in such a way tlegdint which is

“cut off’ has area equal to the area of the “extra” part (see Figthi3;equality of the
two areas is a direct consequence of the Rankine—Hugoniot condition.

u t=0 u t>T u

X X [ X

Figure 7. Area-preserving “overturning” of the graph.

Proposition 4.7.Assume that = u(¢, x) is a piecewise smooth function with compact
support inz, such that: = xz(t) is the unique discontinuity curve afand such that
is a generalized solution of equatidd.2). Denote

+oo
S(t) = / ult, z) da.
Then the functioi$ = S(¢) is independent of, i.e., S(t) = const
Proof. Indeed, we can write
x(t) +o0
S(t) = / u(t, z) dr + / u(t, z) dz,
—00 z(t)

wherex = x(t) is the curve of discontinuity of the generalized solutios u(¢, ). As
previously, we denote by, = lim,_ ,)1ou(t,z) the one-sided limits (limits along
the z-axis) of the solution: on the discontinuity curve. Then

ds . 2(t)
D — (1)~ 0)- (1) + / it z) da
+oo
— ot 2(t) +0) - (1) + / w(t, z) da
z(t)
z(t) 400

=) i) = [ (ftee)) de= [ (stutea) ao

= (u_—us) - (1)
— Flu(t.z(t) = 0)) + f(u(t,—0)) — f(ult, +0)) + f(u(t,a(t) +0))
= (Fluy) = F(us)) = (g —u_) - (D). (4.8)

In these calculations, in addition to the equation (4.2) itself, we took adwauotate
fact thatu has compact support iy so thatf (u(¢, —o0)) = f(u(t, +o0)) = f(0).
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Now if u; = u_, then from (4.8) we clearly have

ds

— =0.

dt
In the case:. # u_, we have the same conclusion thanks to the Rankine—Hugoniot
condition (4.5). O

Problem 4.3.Prove the analogous result for the case where a piecewise smooth gener
alized(in the sense of the integral identi®.3)) solutionu = u(t, z) of equation(4.2)
has a finite number of discontinuity curves= z;(t),j =1,..., N.

Remark 4.8.1f a functionu = u(¢, ) has a weak discontinuity on the curiigi.e,
u IS continuous across and only its derivatives, , u, are discontinuous oR, then
the Rankine—Hugoniot condition (4.6) is trivially satisfied (indefedl,= 0 and, con-
sequently, alsdf(u)] = 0). Therefore, a continuous function = w(t, x), which
is piecewise smooth in a domafd and is a classical solution of equati¢h?2) in a
neighbourhood of each smoothness point, is also a generalized soluti&)an the
whole domainQ (it is clear that the functiom = w(¢, z) is not a classical solution in
Q, since it is not differentiable at the pointsz) € I' C Q).

Remark 4.9.Formally, passing to the limit in (4.5) as. — w, we infer that

dx ,

E - (u(ta Sﬂ)), (49)
on a weak discontinuity curve = {(¢,z) | = z(¢)} of u = u(t, z); this means that
a weak discontinuity propagates along a characteristic.

Let us provide a rigorous justification of this fact.
Letl' = {(¢,z) | = = ()} be a weak discontinuity curve separating two classical
solutionsu = u(t,z) andv = v(t, z) of equation (4.2). Then

u(t,z(t)) = v(t,x(t)). (4.10)
Differentiating (4.10) with respect tQ we obtain
dx dx
ur(t 2(8)) + ua(t, 2(t) - o5 = ve(t, 2(t)) +valt,x(t) - —

Here and in the sequel,, v., u;, v, denote the corresponding limits of the deriva-
tives as the poinft, z-) tends to the weak discontinuity curive (The existence of these
limits follows from the definition of a weak discontinuity.) Expressingttterivatives
from the equation (4.2), we have

dx

uq (t, 2 (1)) - % = f'(ult, 2(8))ue = vo (b, 2(1)) - - = f'(0(t, 2(8))) s

Hence, taking into account (4.10), we obtain

(ur(ta(t) = vl (% = Fateote)) =0

Since the curve = z(t) is a weak discontinuity curve, the relation(t, =) # v, (¢, z)
holds on this curve; thus (4.9) follows.
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Exercise 4.11Is it true that the following functions = u(¢,z) are generalized so-
lutions (in the sense of the integral identity.3)) of equation(4.2) in the stripM
(remind thatll; = {—coc < z < 400, 0 < ¢t < T7}), for

0 sz wn={ ]
@) fu) =22, u(t,x):{o gz;
i) flu) = u2)2, u(t,x)z{é ;g:i;’i
@ o=t wen={
I s

forz > 0;

-1 forz<t,
1 forz >t

W) )=, u(t,x):{ L fore<o
Vi) )=, u(m)_{

1 forxz<t
_ .3 = :
(viii) flu)=w? uft,z) = { —1 forz>t?

Exercise 4.2 Construct some non-trivial generalized solutions in the dttipfor the
equations

0) ur — (u®), =0,

(i) w—u?ou, =0,
(i) w ot sinu-u, =0,
(iv) ur — (€")e =0,
(v) ur + (e")e =0,
(vi) U + Uy /u =0

(by non-trivial, we mean a generalized solution that cannot be identifiedanithssi-
cal solution upon modifying its values on a set of Lebesgue measuje zero
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4.3 Example of non-uniqueness of a generalized solution

It turns out that extending the notion of solution of equation (4.2) by cépdathis
equation with the integral identit{4.3) (let us stress again that this identity expresses
in a generalized way the conservation |&v4) for the vector fieldd = (u, f(u)))
may result in non-uniqueness of a generalized solution to a Cauchliepro order

to observe this loss of uniqueness of a solution, let us consider equa®)m(th the
flux function f (u) = »? and with the zero initial datum:

ug + 2uu, = 0, reR, 0<t<T, (4.11)
“‘t:o =0. (4.12)
The functionu(¢, ) = 0 is a classical solution, and thus it is also a generalized solution

of the above problem. Nonetheless, we can construct non-zeroafjead solutions
of the problem considered. Assign (see Fig. 8)

0 forx < —dt,
-5 for -t <z <O,

t,x) = whered > 0. 4.13
us(t,2) +6 for0 <z < +4t, ( )
0 forz > +dt,
X
x=8t £y fw=u?
0
8 52 Z
: .
_6 3
5 0 5 u
0 x=-5t

Figure 8. One-parameter family of “wrong” solutions.

Formula (4.13) defines the functian = us(t, =) with four components of smooth-
ness; on each of theses is a classical solution of equation (4.11) (it is clear that, in
general, any constant satisfies equation (4.2) whatever be the fletoiuri = f(u)).

Let us check the Rankine—Hugoniot condition on each of the three lirdisaintinu-
ity of the first kind (which are: = 0 andz = +6t):

asr = 0, we have,_ = —§,u, =4, and

de _ o = (=0)° _ flus) = flu-).
dt d—(=9) Up —u_
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asx = —dt, we haveu_ = 0,u, = —¢, and

dz (=0)" =0 fluy) - flu).

dt " (=) -0 up-—u_

asx = 6t, we haveu_ =4, u, =0, and

e P& fluy) - flu)
a  0-8  uy—u_

Notice that, in the case of piecewise constant solutions, the Rankine—idtigon-
dition has a simple geometrical interpretation. Let us draw the graph ofuthéuihc-
tion f = f(u) respective to the axds, f), oriented parallel to the axds, =). Next,
mark the point§u_, f(u_)) and(u., f(us)) on the graph (see Fig. 9). Then the seg-
ment connecting the two points must be parallel to the discontinuitytliaer(t) = kt.

Indeed, the slope of this segment is equalf—i’q‘):i#, while the slope of the dis-

continuity line equalsi? = k; the equality between the two slopes is exactly what the
Rankine—Hugoniot condition (4.5) expresses.

f
(u._, f(u.)) x=kt

u+
u_
u+
u. u I VA T
NV —

(u,, f(u,))

Figure 9. Geometrical interpretation of the Rankine—Hugoniot condition.

This geometrical point of view facilitates the graphical representationeoféimer-
alized solutions.s (¢, z) of equation (4.11), as constructed above. Marking the points
(0,0), (46,62) and joining them by segments in the way Fig. 8 shows, we obtain the
slopes of the discontinuity lines .

Exercise 4.3 Construct a generalized solution of the problénl1)—(4.12)which is
piecewise constant and has three discontinuity lif@ssin the solutions = us(t, z)),
different from any of the solutior{d.13). For the solution constructed, verify analyti-
cally the Rankine—Hugoniot relation on all the discontinuity lines.

Let us point out that it is not possible to construct a piecewise constaetrglized
solution of problem (4.11)—(4.12) with exactly two discontinuity lines. kdiesuch a
solution would have two distinct jumps: a jump from the state 0 (on the left tram
discontinuity line) to some constant statéon the right), and the jump from(now on
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the left) to O (now on the right). According to the Rankine—Hugoniot conditioese
jumps can only occur along straight lines of the forrs WHFC, C € R. Since
the solution also obeys the zero initial datum, the constashould be the same for
the two jumps. Thus both jumps cancel each other, because they ¢tmegroame and
the same line; thus our piecewise constant solution is in fact equal to zero.

Exercise 4.4 Construct piecewise constant generalized solution@dfl)—(4.12)with
more than three discontinuity lines.

Exercise 4.51s it possible to construct a solution as in the previous exercise but with
an even number of discontinuity lines, each of these lines being a ray atiiggrfrom
the point(0, 0) of the(¢, z)-plane ?

In order to construct a non-zero generalized solution of the Cauafgm
w+(f(uw), =0,  uf_,=0, (4.14)

with an arbitrarily chosen flux functiofi = f(u), it is sufficient to pick two numbers
aandg, o < 0 < S, in such a way that the point§, f(0)), (o, f(«)) and (8, f(3))

are not aligned. Then we join these points pairwise by straight line segnasritsvas
described above for the cage:) = u? (see Fig. 8), and obtain the slopes of the discon-
tinuity rays in the planét, z) for the solution to be constructed. Sinee< 0 < 3, the
slope of the segment joinin@y, f(«)) with (3, f(3)) is always the intermediate one
among the three slopes. Thus the construction produces a piecewssant@olution
with the zero initial datum and the two intermediate states.

Exercise 4.6.Justify carefully that the above construction leads to a piecewise con-
stant generalized solution of proble@.14) Show that if, e.90 < a < 3, then the
analogous construction yields a non-trivial generalized solution with the irdaalim
uo(z) = .

The above construction breaks down in the case where such nonebjfigitdgs on
the graph off = f(u) cannot be found. This corresponds exactly to the case of an
affine flux function, i.e.,f(u) = au+b, a,b € R. In the latter case, our quasilinear
problem is in fact linear:

uy + auy = 0, wli—0 = uo(z). (4.15)

In the case whereg is smooth (this applies, in particular, ig = 0), the unique
classical solution of this problem is easily constructed by the method of 8&t;tibe
solution takes the form(t, z) = ug(z — at).

Problem 4.4.Show that for any piecewise smooth solution of equatijoh au, = 0,

a = const the curves of discontinuity are the characteristics of the equation, ie., th
linesz = at + C. Then, prove the uniqueness of a piecewise smooth solution of the
Cauchy problent4.15)with a piecewise smooth initial datum. Precisely, show that

this solution is given by the equality(t, z) = uo(z — at).
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It can be shown that this solution is unique not only within the class of cldssica
solutions, but also within the class of generalized ones; but this is beyersttipe
of these notes. In particular, the zero solution is the unique generalihgitbaoof
problem (4.14) in the case of a linear flux functipr= f(u).

Exercise 4.7 Construct non-trivial generalized solutions of the probléfil4) with
f(u) = B, then withf (u) = sinu. Is it possible to construct such solutions with more
than three discontinuity lines ?

It should be understood that, from the physical point of view, all thetngial gen-
eralized solutions to the problem (4.11)—(4.12) or to the problem (&&t)wrong”;
notwithstanding the fact that these functions satisfy the PDE in the senseinfegral
identity (4.3) and comply with the conservation l&d4), the only “physically correct”
solution of the above problems should be, unquestionably, the solutiom) = O.
Consequently, we should also devise a mathematical condition which welgct,s
among all the generalized solutions, the unique “correct” solution. Thislition,
called the entropy increase condition, will now be formulated.

5 The notion of generalized entropy solution

As exposed in the previous sections, in the study of the Cauchy probleimefequa-
tion
ue + (f(u)), =0 (5.1)
with the initial data
u’tzo = ug(x), (5.2
we encounter the following situation:

1) There exist some bounded smooth (infinitely differentiable) initial datsuch
that the unique classical solutien= u(¢, ) remains a smooth function up to some
critical instant of timer", but the limit

w(T,z) = tﬂrTn701L(t, x)

is only a piecewise smooth function with discontinuities of the first kind. Theaeq
tion (5.1) is one of the so-called “hyperbolic” equations, and the smamithisns of
these equations are determined by the “information” propagated fromittz¢ man-
ifold along the characteristics. Thus it happens that this “information” itealis to
the appearance of discontinuities of the first kind. In this case, it is Hdtuexpect
that the solution remains discontinuous as well on some time intgryal+ 4]. This
means that, in order to construct a nonlocal theory of the Cauchy pndbld.)—(5.2),
discontinuous solutions must be introduced into our consideration.

2) One natural approach for introducing such generalized solutidies @ the
ideas of the theory of distributions (this approach was discussed in SdctiprEven
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in a class as wide as the class of all locally bounded measurable functibins ne
could consider generalized solutioms= u(¢, z) in the sense of the integral identity

/ﬂ [ues + f(u)ps] dodt =0, (5.3)

which should hold for all “test” functiong € C5° (M ); the initial datum (5.2) should

be taken, say, “in thé |oc Sense” (see (5.31) in Section 5.5 for the exact definition).
Nonetheless, as we have demonstrated in the previous section, saldgdfime

eralized solutions of the Cauchy problem may fail to be unique (even &rcdse

uo(z) = 0). Itis clear that the non-uniqueness stems from the fact that the/so-

lutionsus, § # 0, have discontinuities. One could guess that not all the discontinuities

are admissible; but how can we find the appropriate restrictions on thentiisaities?

5.1 Admissibility condition on discontinuities: the case ba convex flux
function

Let us make the additional assumption
>0,  feC3R), upeC*R).

Problem 5.1.With the help 0f3.8) or of (3.12), using ProblenB.2 or Problem3.3,
show that in this case, € C?(M7) where[0, T) is the maximal interval of existence of
a classical solution.

Now let us exploit the following consideration, which is purely mathematical: w
try to reveal such properties of the smooth (fer T') solutions that do not weaken (or
which are conserved) while time approaches the critical valdel’. Such properties
will therefore characterize the naturally arising singularities of a solutioenote
p = u,(t,x) and differentiate the equation (5.1)4n We have

0=p;+ f'(u) - pu+ f'(w) - p* = pi + f'(w)ps .

Along any characteristics = x(t), 2 = f' (u(t, z(t)) (recall that the characteristics fill
the whole domaiiill of existence of a smooth solution), the latter inequality reads as

dx dp(t,z(t))
> + —p, = ————==
0> pi at’e dt ’

that is, the functionp does not increase along the characteristies(t). Thus,

p(t, (1)) < p(0,2(0)) = u,(0,2(0)) < Sgﬂgué(x) = Ko.

Consequently, at any poifit, z) € My there holds

p(t,x) = u,(t,z) < Kp. (5.4)
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As the derivative., (T, x) is not defined for some values efwe pass to the following
equivalent form of the inequality (5.4):

u(t,z2) — u(t,z1)
T2 —T1

< Ky Vi, x2. (5.5)

A similar inequality was introduced in the works of O. A. Gl (see [37]); the
inequality played the role of the admissibility condition in the theory of generilize
solutions. From (5.5) it follows thak(¢, z2) — u(t, 21) < Ko(zz — x1) for 1 < xy;
thus at the limit ase, — 2* + 0, 21 — 2* — 0, wherez* is a discontinuity point
of u(T, z), we have

up = u(t, 2" +0) <u(t,z" —0) =u_. (5.6)

(Rigorously speaking, passing to the limit implies < w_, butu. # u_ since we
assumed that* is a discontinuity point.)

Let us require (5.6) to be satisfied at every point of discontinuity ofreegdized
solutionu = u(t, x) (the solution is assumed to be piecewise smooth). It is natural to
interpret this condition as aadmissibility conditioron strong discontinuities (jumps)
within the class of piecewise smooth solutions.

Remark 5.1.In the example of non-uniqueness exposed above (see Sectioro#.3) f
the Cauchy problem (4.11)—(4.12), where we hg{éu) = 2 > 0, the solutionsus,

d > 0, of the form (4.13) fail to verify the admissibility condition (5.6) on thecdis-
tinuity line 2 = 0. The unique admissible solution of this problem will be the function
u(t,z) = 0, which is the classical solution of the problem considered.

If ”(u) < 0, then substituting = —v into equation (5.1) we obtain the equation
v + (f(v)). = 0, wheref(v) = — f(—wv); notice thatf”’ (v) = — f”"(—v) > 0. For the
solutionv = v(¢, z) of the above equation, we should have< v_, according to the
admissibility condition (5.6). We conclude that in the cg%éu) < 0, the admissibility
condition is the inequality,, = —v, > —v_ = u_, converse to the inequality (5.6).

To summarize, for the case of a convex or a concave flux fungtien f(u), we
have deduced the following condition for admissibility of discontinuities. «Letre-
spectivelyu,., be the one-sided limit of a generalized solutiog= u(¢, z) as the dis-
continuity curve is approached from the left, respectively from the riglung the
x-axis. Then

- in the case of a convex functigh= f(u) (for instance,f(u) = u?/2,¢e%,...),
generalized solutions of equation (5.1) may have jumps fiornto «.. only when
U_ > Uy,

- in the case of a concave functigh= f(u) (f(u) = —u?,Inw,...), jumps from
u_ towuy are only possible when_ < u. .

Let us provide a “physical” explanation of the admissibility condition obtaifoed
the case where the monotonicity ffis strict. At any point of an admissible discon-
tinuity curvez = z(t), consider the slope#’(u) and f'(u_) of the characteristics
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x = f'(us)t + C which impinge at this point from the two sides of the discontinu-
ity. Consider also the slope = 4 = fu)=/(u") of the discontinuity curve (more

Uy —U_
exactly, the slope of its tangent line); notice thais equal to the valug’() at some
point« which lies strictly between, andu_. These three slopes satisfy the so-called

Lax admissibility condition

fluy) = flur)

Uy — U—

Flug) <w= = ['(5) < f'(u_). (5.7)
Indeed, iff is strictly convex, therf’ is a monotone increasing function, and the admis-
sibility condition for this case of a convex flux functighensures thait, < o < u_.
Similarly, if f is strictly concave, then the admissibility condition yields> @ > u_,
so that we get (5.7) again, singéis a monotone decreasing function in this case.

Condition (5.7) is a particular case of the admissibility condition which is funda
mental for the theory of systems of conservation laws. It was firshdidated by the
American mathematician P. D. Lax (see [30]).

Therefore, we observe that, agrows, the characteristics approach the discontinu-
ity curve from both sides (see Fig. 10a); none of the two characteristiceove away
from it (the case where the characteristics move away from the disciaptouive as
t grows is depicted in Fig. 10b). This means that those discontinuities ariesabli®
which are due to the fact that characteristics of a smooth solution (smaothefach
side of the discontinuity curve) tend to have intersectiornisgasws (the intersections
eventually occur on the discontinuity curve). On the contrary, the situati@nwhe
discontinuity curve is “enforced”, with some of the characteristics origigeout of
the discontinuity curve as time grows, is not admissible.

g | by

Figure 10. Lax condition: admissible and non-admissible discontinuity curves.

Example 5.2.Let us illustrate the above statement with the example of the Hopf equa-
tion (1.1), i.e., the equation (5.1) with(u) = w?/2. This equation describes the
displacement of freely moving particles (see Section 1). Assume thaidtieles
situated, at the initial instant of time, in a neighbourhoodt+at (i.e., particles with

the z-coordinate larger than some sufficiently large value), move with a velogity
assume that the particles initially located in a neighbourhoodef have a velocity

u_; and letu; < u_. The latter constraint means that, as time passes, collisions are
inevitable, and eventually, a shock wave will form. The velocity of prepiag of this
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shock wave created by particle collisions will be equal to

" fluy) — flu_) u? )2 —u? 2 Cuy tu_
 up—u_ o up—u_ 2

When the initial velocity profile is a monotone non-increasing function, ithoan
justified that for sufficiently large, we obtain a generalized solution of the Hopf equa-
tion of the following form:

5.8
Uy forz > wt + C. (5-8)

u(t,x):{ U_ forz < wt + C,

This solution can be interpreted as follows. The particles with velocitiesand
uy collide when the quicker one (with the velocity ) overtakes the slower one (of
velocity u.); this collision is not elastic, and the two particles agglomerate into one
single particle. After the collision, the particles continue to move with the velocity
(uy + u_)/2, creating a shock wave. The velocity of propagation of this wave is
calculated with the help of the law of momentum conservation: this velocity is the
arithmetic mean of the particles’ velocities before the collision. Let us painthat
such collisions induce a lost of the kinetic energy of the particles (we withéur
discuss this question later).

If, on the contrary, the speeds of the particles neas and near-co were related
by the inequality.. > »_ and if the initial velocity distribution were a smooth mono-
tone non-decreasing function, then no collision of particles would evarro@t any
time instant. > 0, the velocity distribution:(¢, -) would be a smooth non-decreasing
function as at the time = 0, and no shock wave might form (see Section 3.1). There-
fore, in the case.; > u_, the functionu given by (5.8), although it does satisfy the
integral identity (5.3), is not a physically correct solution of the Hopfadiun.

5.2 The vanishing viscosity method

In order to generalize the admissibility condition of the previous section toatbe af
a flux functionf = f(u) which is neither convex nor concave, we make the following
observation and reformulate this condition in the terms of the respectiagdoof the
graph and the chords of convex or concave functions. We see thpintipebetween
u_ andu, is admissible in the sense of the previous sectian if> u, (respectively,
u_ < u,) and the graph of the flux functiofis situated under the chord (respectively,
above the chord) joining the points_, f(u_)) and(us, f(us)) (see Fig. 11).

It turns out that the above reformulation of the admissibility rule for cafoencave
flux functions remains appropriate for the case of an arbitrary flugtfon f.

For a rather rigorous justification of this statement, let us use “physicatdm
exactly, “fluid dynamics”) considerations based on the concepts ofeal ghs and
a viscous gas. It = z(¢) is the trajectory of a particle of an ideal gas in a tube
aligned with thez-axis, and if the function: = w(t, z) represents the velocity of the
particle that occupies the space locatioat the time instant, then (see Section 1)
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f(u)

f(u)

u. u, u u, u_u

Figure 11. Visualization of admissible jumps, I.

z(t) = u(t,z(t), i(t) = % = 0; this calculation previously led us to the Hopf
equation (1.1). But, ideal gases “do not exist”; they only exist the@igfjas limits
when the viscosity of a real gas is neglected because of its smallness.

If ¢ > 0 is the viscosity coefficient of a real gas, then (under certain assumptio
the force of viscous friction which acts on the particle) at timet and relative to the
mass unit can be taken to be,.(¢,z(t)). Thenz = (3—;‘ = cug,, and instead of the
Hopf equation we obtain the so-called Burgers equétion

Up + Uy = EUgy - (5.9)

It is natural to admit that — this is what actually takes place — all admissible gen
eralized solutions of the Hopf equation can be obtained as the limit of soiéoss
u® = uf(t,x) of the equation (5.9) as the viscosity coefficietiends to 0. The proce-
dure of introducing the termu,., into a first-order equation and the subsequent study
of the limits of the solutions® ase — +0 is called thé'vanishing viscosity” method

Before we continue with the application of the vanishing viscosity method to a
justification of the general admissibility condition formulated above, let us jpoit an
important method of “linearization” (in a sense) of the Burgers equaiid®).(Observe
that we haveu; = (eu, — u?/2),; thus we can introduce a potentid = U (¢, z),
determined from the equality

dU = udz + (cuy — u2/2) dt.
In this case
U, = u, Uy = euy — u2/2 =eUps — (U,,)Z/Z,
i.e., the functionJ satisfies the equation

Uit 35U = eUss (5.10)

In (5.10), let us make the substitutioh= —2¢In z. Then

2
U= -2 U, =272 U, =277 4 25@.
V4 z V4 z

SNT — In the western literature, it is customary to call this eégprat“the Burgers equation with viscosity”;
accordingly, the term “Burgers equation” then designs vidaalled the Hopf equation in our lectures.
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Equation (5.10) then rewrites as

2 2
—2elt 252@ = _pe2% 4 o2 <Zm2) ,
z z z z
so that we are reduced to a linear equation for the functien z(¢, z), which is the
classical heat equation:
2t = €Zqg - (5.11)

Remark 5.3.The linearization method pointed out hereabove was first used by the
Russian mechanicist V. A. Florin in 1948 in his investigation of a physicplieg

tion. Later on, in the 1950th, this method was rediscovered by the Amesatasiars

E. Hopf and S. Cole; nowadays the transformation is often named adter (ibwould

be more correct to speak about the Florin—Hopf—Cole transformation)

It follows from the above substitution that a solution of equation (5.9) hexéattm
w=U, = B P ,
z

wherez = z(¢, ) is a solution of the heat equation (5.11).

As is well-known from the theory of second-order linear PDEs, solutainthe
Cauchy problem for the heat equation (5.11), even with initial data teairdy piece-
wise continuous, become infinitely differentiable for- 0. Hence, solutions of the
Burgers equation (5.9) are also infinitely differentiable functions, andsequently,
they cannot include shock waves.

Now assume that the so-called “simple wave”, given by

u_ forz < wt,
uy forax > wt,

Uy — U—

u(t,z) = u_ + 5 [14 signz — wt)] = {

(5.12)

wherew = const, is a generalized solution of equation (5.1) in the sense of thedhtegr
identity (5.3). For this to hold, it is necessary and sufficient that the Rarklugoniot
condition ;
i _ f(U‘Jr) — f(u—) (513)
dt Uy — U_
holds on the discontinuity line(t) = wt.

For this case, the idea of the vanishing viscosity method can be applietioagsfo
Let us consider a solution = u(t,z) of the form (5.12) as admissible, if it can be
obtained as a pointwise limit (far # wt) of solutionsu® = u*(¢, z) of the equation

ug + (f(uf)), = eug, (5.14)

ase — +0. (The approach developed below has been suggested by |. Ma@Gk]%8]).
Taking into account the special structure of the solutiog (¢, x), let us seek a
solution of (5.14) under the form

w =

T — wt

u®(t,x) = v(§), &= : (5.15)

3
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Substituting this ansatz into equation (5.14), we infer that the funetienv(¢) satis-
fies the equation
—wv' + (f(v) =", (5.16)

On the other hand, it is clear that the functioh= v (2=*) converges pointwise
(for = # wt) to a functionu = w(t, z) of the form (5.12) as — +0 if and only if the
functionv = v(§) satisfies the boundary conditions

v(—00) =u_, v(400) = uy . (5.17)

Remark 5.4.0ne cannot hope for uniqueness of such a functienv(¢). Indeed, if
v is a solution of the problem (5.16)—(5.17), then the functiors v(¢ — &) are also
solutions of this problem, for afly € R.

Integrating (5.16), we obtain
vV'=—-wv+ flv)+C=F(v)+C, C = const (5.18)

The ODE (5.18) is autonomous, of first-order, and its right-hand Bide + C'is
smooth; thus (5.18) admits a solution which tends to constant statéss — —oc)
andu, (as¢ — +o0) if and only if the following conditions are satisfied:

(i) w— andu. are stationary points of this equation, i.e., the right-hand side of equa-
tion (5.18) is zero at these points:

Flu-)+C=F(uy)+C=0,
so thatC' = —F(u—) = —F(u). Upon rewriting the equality’(u_) = F(u4)

under the formf(u_) — wu_ = f(uy) — wu,, we see that it coincides with the
Rankine—Hugoniot condition (5.13).

(ii) There is no stationary point in the open interval betweenandw, ; moreover,
the right-hand sidé”(v) — F(u—) = F(v) — F(uy) of (5.18) restricted to this
interval should be

a) positive ifu_ < u, (then the solution increases):
Fv) = F(u-)>0 Yve (u_,uy) ifu_ <uy,; (5.19)
b) negative ifu_ > u, (v = v(¢) decreases):

F(v) = F(uy) <0 Yoe (ugy,u_) ifup <u_. (5.20)

When the above conditions are satisfied, the solutions of equation (5itt6hwe
desired boundary behaviour are given by the formula

v dw B o upfuo
/UO F(’LU) —F(u_) _57607 Vg = 2 .




38 Gregory A. Chechkin and Andrey Yu. Goritsky

Our point is that the relations (5.19)—(5.20) express analytically thessibility con-
dition.

Now let us interpret this condition geometrically. Substituting) = f(v) — wv
into (5.19) and (5.20), we have

fv) = flus) >ww—u_) Yoe (u_,uy) If u <ug,
fv) = fluy) <w(v—uy) Vo€ (up,u) if upr <u_,

which, in view of the Rankine—Hugoniot condition (5.13), amounts to

flu) = fuo) fuy) = flu-)

S>w="—"""—"""2 VYue (u_,uy) If u_<uy, (519)
U— U_ Uy — U
f = flus) | fle) = )y, (up,u) if up<u_. (520)
U — U4 Uy — U-—
£ f f .
f(u,) fw)yr——=Ch 0 x=ot
) Gty - |
f(u) 0‘ n
u_ u, u, u_ u

Figure 12. Visualization of admissible jumps, II.

Let us represent the graph of a flux functifn= f(u) (see Fig. 12). Condition
(5.19) means that the chor@h with the endpointu_, f(u_)), (us, f(us+)) has a
smaller slope (the slope is measured as the inclination of the chord withctdspe
the positive direction of thei-axis) than the slope of the segment joining the point
(u_, f(u_)) with the point(u, f(u)), whereu runs over the intervalu_, . )). Con-
sequently, the pointu, f(u)) and thus the whole graph gf = f(u) on the interval
(u—,u4) lies above the chor@h. In the same way, condition &) signifies that the
graph off = f(u) for u € (uy,u_) is situated below the chor@h.

Remark 5.5.Upon varying the values_, v, and also the functiorf = f(u), one
can construct different convergent sequences of admissibleaeee solutions of
the form (5.15). It is natural to consider as admissible also the pointwists loh
the admissible solutions. Therefore, it is clear that any situation whererdph @f
f = f(u) touches the chor@h should also be considered as admissible.

In conclusion, we obtain that a solutienof the equation (5.1) may have a jump
from «_ to uy (a jump in the direction of increasing) when the followingjump
admissibility condition holds:
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« in the caseu_ < w4, the graph of the functiorf = f(u) on the segment
[u_,uy] is situatedabovethe chord (in the non-strict sense) with the endpoints

(u— f(u-)) and(uy, f(u));

+ in the caseu_ > wu,, the graph of the functionf = f(u) on the segment
[us, u_] is situatedoelow the chord (in the non-strict sense) with the endpoints

(u—, flu-)) and(u, f(uy)).

Figure 13. Visualization of admissible jumps, IlI.

Let us give another analytical expression of the condition obtained.si@ena
curve on which the solution has a jump fram to «... In coordinategu, f) we draw
the graph of the functiorf = f(u) on the interval between_ and«. and the chord
joining the endpoints of this graph. As in Fig. 8 and Fig. 9 (see Sectionwe3nean
that the axegu, f) are aligned with the axe@, z). Now on the same graph, let us
situate the unit normal vecter= (cogv, t),cogv, x)) to the discontinuity curve (see
Fig. 13). Introduce the pointd = (u_, f(u—)), B = (u+, f(u)), and let the point
C = (u, f(u)) run along the graph. The vecteiis orthogonal to the vectot B (this
is an expression of the Rankine—Hugoniot condition (5.13)) and istedeénpwards”,
i.e., cogv, z) > 0 (this is because we have chosen the normal which forms an acute
angle with the positive direction of the-axis). The condition stating that the graph
of the functionf = f(u) on the interval between_ andu.. is located over the chord
(“over”, in the non-strict sense) means exactly that the angle betweerethorsAC

(or, equivalently,ﬁf) andv does not exceed/2, that is, the scalar produ(:ﬁ, V)
of these vectors is nonnegative. Thus for the ease v, we have

(u—wu_)cogu,t)+ (f(u) — f(u-))cogrv,z) 20  Vue (u_,uy). (5.21)

Similarly, the condition stating that the graph is located under the chord€ftyid
the non-strict sense) means that the angle between the same veceligasdygreater

than or equal tar/2, that is, the scalar produ@?_(f, v) of these vectors is non-positive.
Thus for the case_ > u., we have

(u—wug)coquv,t) + (f(u) — f(ug))codr,z) <O Vu € (uy,u_). (5.22)
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Remark 5.6.The admissibility conditions deduced with the vanishing viscosity ap-
proach agree perfectly with the conditions obtained in the previous seotitimef case

of a convex/concave flux functiof = f(u). Indeed the convexity (respectively, the
concavity) of a function means, by definition, that the chord joining twirany points

of the graph of the function lies above (respectively, lies below) thetgitagplf.

In the sequel of these lectures, unless an additional precision is giyersolution
of equation (5.1) we will tacitly mean a piecewise smooth function that satigfie
integral identity (5.3) and, in addition, the admissibility condition formulated & th
present section.

Exercise 5.1 Examine the question of admissibility of each of the jufjyr®ps satis-
fying the Rankine—Hugoniot conditid.13)) present in the solutions = u(, z) to
the corresponding equations of the fo(fl):

(i) for the generalized solutions= u(t, z) given in Exercisé.1;
(i) for the generalized solutions= (¢, ) constructed in Exercisé.2;
(iiiy for the generalized solutions= u(t, z) constructed in Exercisé.7.

5.3 The notion of entropy and irreversibility of processes

The jump admissibility conditions obtained in the previous sections are oftiu ca
entropy-increase type conditioh$Vhere does this name come from? The reason is,
the equations we study model nonlinear physical phenomena (callede§ses” in
the sequel) which are time-irreversible, and the function which chaiaesethis irre-
versibility is called “entropy”.

The Hopf equation (1.1) is, certainly, the simplest model for the dispiaoé of
a gas in a tube; in more correct (more precise) models, also the prasfsthe gas
is present, moreover, the density of the gas enters the equations whygastiseecom-
pressible. The entropy functighis expressed with the help of the two latter quantities
characterizing the gas, namely the pressure and the density. In thef fieid dynam-
ics, already in the 19th century it has been known that the entropy furities not
decrease in time across the front of a shock wave

Sy =8S(t+0,z)>5_=5(-0,z), (t,x)erl. (5.23)

Therefore, all the inequalities that express irreversibility of processesture are
called “inequalities of the entropy increase type”. For the simplest gamniigs equa-
tion, which is the Hopf equation, the role of entropy is played by the kinetioygre
the particle located at the pointat the time instant:

S(t,x) = %uz(t,x).

8NT — In the literature on conservation laws, one often speaksnifopy dissipation conditions”. This term
refers to the inequalities such as (5.28), (5.30) or (5.4R)v. Each of these inequalities states the decrease (the
dissipatior) and not the increase of another quantity related to vafioustions called “entropies”.
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Let us show that inequality (5.23) for this “entropy” functiéhdoes hold across an
admissible shock wave.

For the case of the Hopf equation (i.e., fbfu) = u?/2), the Rankine—Hugoniot
condition (5.13) has the form

u— +uy dx
5 = (5.24)

Since the flux functionf(u) = w?/2 is convex, the jump admissibility condition re-
duces to the inequality

u_ —uy > 0. (5.25)

If dz/dt > 0, then (according to Fig. 14) we hage = »2/2 andS, = u2 /2.
Multiplying inequality (5.25) by the expressidn_ + u.)/2 (this expression is posi-
tive thanks to (5.24)), we have? — u2)/2 > 0, thusS_ < S..

Figure 14. Increase of5 for the Hopf equation.

Similarly, if da/dt < 0, then (see Fig. 14)

(us)? =S

NI =

5.4 Energy estimates

Let us provide another characterization of irreversibility for equatioh)(% charac-
terization which has a clear physical meaning. Consider the full kinetiggrod the
particle system under consideration:

Bt) = / m %uz(t,:c) da. (5.26)

— 00

For smooth (and, say, compactly supported) initial data, there existssicah
solutionw of problem (5.1)—(5.2) on some time interyal 7'), T > 0; moreover, for
all fixed ¢, this solution has compact supportiinIn the present section, we will only
consider those solutionsof equation (5.1) for which the kinetic energy (5.26) is finite
(this holds, e.qg., in the above situation where- (¢, ) is of compact support in the
variablez).
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Proposition 5.7.For classical solutions of equatiaf®.1) there holds
E(t) = const
i.e., the kinetic energ§h.26) is afirst integralof the equatior{5.1).

Proof. Since we have assumed thdt, £oo) = 0, we have

+o00 +o00
= == [ (@), do

r=1400 00 u(t,+00)
= —uf(u) +/ f(w)u, de = /( ) f(u) du = 0. O
T=—00 —0o u(t,—oo

Now consider the corresponding equation with viscosity:
ug + (f(uf)), = eug, (5.27)

Proposition 5.8.Letu® # 0 be a solution of equatio(b.27) such that, in additiony®,
us, andwug, decay to zero as — +oo at a sufficiently high rate, and uniformly in
Then the full kinetic energiy = E(t) of this solution is a decreasing function of time.

Proof. As in the proof of the previous proposition, we find

+0o0
% = / uug dz

o +o0 (5.28)

= / u® (eu, — (f(uf))y) do = —5/ (ui)z dzr < 0.
— 0o — 00

Notice that we have the equality sign in (5.28) only in the case of a funetidhat is
constant inz. Since we assume that this function decays to zero as oo, we have
dE/dt < O unlessu® = 0. D

Recall (see Section 5.2) that admissible generalized entropy solutiohgequa-
tion (5.1) were obtained as limits of solutions of equations (5.27); on the latter
solutions, the kinetic energy is dissipated. Therefore, it can be exptedlso on
the limiting solutions, the kinetic energy does not increase with time.

Proposition 5.9.Assume that = u(¢, z) is a piecewise smooth admissible generalized
entropy solution of equatiofb.1) with one curve of jump discontinuity= x(¢). Then
the speed of decrease of the kinetic enetgy: F(t) of this solution is equal, at any
instant of timet = ¢, to the areaS(to) delimited by the graph of the flux function
f = f(u) on the segmeniu_,u.] (or on the segmeni.,,«_|) and by the chord
joining the endpoint$u_, f(u_)) and (u, f(uy)) of this graph(see Fig.15):

dE

i (to) = =S(to). (5.29)
As previously, by.. = uL(t9) we denote the one-sided limits (as— z(to)) of the
functionz — u(to, z) as the point approaches the discontinuity positidry).
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f f=f(u)
f(u.)

f(u.)

Figure 15. Area that determines the energy decrease rate.

Proof. To be specific, consider the case where< u. and, consequently, the graph
of the functionf = f(u) on the segmeri:_, v ] lies above the corresponding chord.

e F) + 5
uy )+ flu-
S = / f(u) du— . 5 (uy —u_).
On the other hand,
dEd [T°1, d(*®1, feol
= = %/_OO U (t,x) dz = pn </_OO U (t,z) da:Jr/m(t) U (t,x) dz
1 z(t) 1 +o0
= Zu? - (t) +/ wug(t,2) de — Zu? - @(t) —|—/ uwug(t, z) dx
2 —00 2 z(t)
uZ _ uZ ) z(t) 400
= [ G, de [ Cu(), de
—o0 x(t
2 2 z=x(t) z(t)
— S @]+ [ e do
T=+00 too
—uf(u) f(w)ug dz.
r=2(t) z(t)

Thanks to the Rankine—Hugoniot condition (5.13) and taking into acdberfact
thatu(t, +00) = 0, we have

2 —u? ugy) — flu_ - 0
%:u_zmr_f( ;j_lfb( )_u_f(u_)+/ flu) du+us f(uy) + f(u)du

) )l = / ‘o

= us fug) —u_f(u

_ )+ / o
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Remark 5.10.If the solution contains several shock waves (i.e., several jumprtisco
nuities), theron each of the discontinuity curvéee energy is lost (dissipated) accord-
ing to the inequality (5.29). (The proof of this fact is left to the reader.)

Conclusion. We see that, according to Proposition 5.7, we h&{® = const= E£(0)
on smooth solutions = u(t, z) of the equation (5.1), up to the critical instant of time
T (the instant when singularities arise in the solutions), i.e., up to theTirtere is
no dissipation of the kinetic energy; the kinetic energy stays const&ot 6.

However, when shock waves appear, according to (5.29), we have

dE

— <0
dt<’

so that the kinetic energy dissipates (on a shock wave, a part of it i$dranes] into
heat). Consequently, the evolution of admissible generalized solutions hotk s
waves is related to the decrease of the kinetic energy; this is what makphytbie
cal processes modelled by equation (5.1) irreversible.

The readers who sometimes spend vacations at the sea are probagidynsed
with this phenomenon. Near the shore, if the sea is calm and the waveshperéte,
the sea temperature near the surface is almost the same as the air terapyave.
When the wind becomes stronger, waves become foamy, turbuleotusas occur;
these “broken waves” can be seen as shock waves on the seastinfdus case, after
some time, one can observe that the temperature of the surface lalyer £da has
become higher than the air temperature. This heating phenomenon ifarwed by
the heat production that occurs on the shock waves.

From the purely mathematical point of view, this situation stems from thaHatt
equation (5.1) does not change under the simultaneous charngatof—¢ and ofx
into —z (similarly, any of the shift transformations along the axes, namely x — x¢
or t — t — T, does not change the equation); in this case, it is said that the equation
remains invariant under the corresponding transformation. Coesaégualong with
anysmoothast < T, solutionu = u(t, =) of equation (5.1), the transformed function
u(t,z) = u(T —t, —x) will also be asmoothsolution of the same equation.

The same property holds for generalized solutions (in the sense ofdhesgral-
ity (5.3); the admissibility condition is not required), because the identiB) (5.in-
variant under the same transformations.

If, on the contraryu = u(t, z) is anadmissible discontinuous generalizealution
of equation (5.1), then the corresponding functiowill not be an admissible gen-
eralized (“entropy”) solution of the equation considered. This is because the entropy
increase condition is not invariant under the transformation which insltite time
reversal (the entropy increase condition is then replaced by the seneatropy de-
crease condition). Therefore, the simultaneous changend 7' — ¢ and ofz into
—x is not allowed in the presence of discontinuous solutions. Hence, an sdimis
discontinuous generalized solution= u(¢, z) is transformed into the non-admissible
(“wrong”) discontinuous generalized solutiaft;z) = u(T — t, —z).
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5.5 Kruzhkov's definition of a generalized solution

In the preceding sections we discussed the requirements which orld shpose on
jumps (i.e., discontinuities of the first kind occurring along smooth @)reégeneral-
ized solutions (in the sense of the integral identity (5.3)) of equation.(Sayvever,
this kind of restrictions is only meaningful for piecewise smooth functiont)is case
the notion of a jump, i.e., a discontinuity curve with one-sided limits of a soluiion
this curve, is meaningful. In contrast, while defining a generalized solutien:(¢, )
of this equation in the sense of the integral identity (5.3), we only need thaitdgrals
in (5.3) make sense. Clearly, the latter assumption is by far less regtroctimpared
with the assumption of piecewise smoothness of the funatienu(t, z). Therefore,
a natural question arises, namely, how could one define an admissitdeatized so-
lution to the Cauchy problem (5.1)—(5.2), so that the new notion includés the
integral identity and a condition of the entropy increase type (we need genmear-
alization of the entropy increase conditions stated above as we want t@ éRktm
to solutions which may not be piecewise smooth). The answer to this quesi®n
given by S. N. Kruzhkov (see [25, 26]), and the answer applie®nlytto the prob-
lem we consider in these lectures but also to a wider class of equationysiaths.
In the same works of S. N. Kruzhkov, the existence and uniqueneas afimissible
generalized solution, in the sense of the new definition, was proved.

Let us now give the aforementioned definition. One of the widest spEHdesc-
tions in which generalized solutions of our problem can be searched ip#te of
bounded measurable functions= u (¢, z) defined in the strifly = [0,7) x R,.

Definition 5.11.A bounded measurable function= u(t,z) : My — R is called a
generalized entropy solutidifin the sense of Kruzhkov) of the problem (5.1)—(5.2) if

(i) forany constant € R and any nonnegative test functign= ¢(t,z) € C3° (M)
there holds the inequality

/ [Ju — K|gs + sign(u — k) (f(u) — F(k))ps] dzdt>0; (5.30)
My
(i) there holdsu(t,-) — ug ast — +0 in the topology ofL1 joc(R), i.€.,
b
Viad CE,Jim / lu(t, ) — uo(x)| dz = O, (5.31)

Proposition 5.12.If a functionu = u(t,z) is a generalized entropy solution in the
sense of Definitiob.11 of problem(5.1)—(5.2) then it is also a generalized solution of
equation(5.1) in the sense of the integral identit$.3).

Proof. Note that the function taking everywhere a constant valigea classical solu-
tion and, therefore, itis also a generalized solution of equation (5.fbjldvs that for

"NT — The western literature refers to “Kruzhkov entropy sans” or merely to “entropy solutions”.
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any test functionp € Cg° (M), there holds

/ e+ F(k)pa] dadt = O. (5.32)
MNrp

This identity can also be checked by a direct calculation.
Choose a valug > ess-sup, ,\cn, u(t, =) in (5.30) . We have

/n [(k —uw)er + (f(k) = f(u))ps] dzdt >0

for any functiony € C3°(Mr), ¢(t,x) > 0. Taking into account (5.32), we conclude
that

_ /n [upy + f(u)p,] dzdt > 0. (5.33)

Then takingk < ess-inf; ,)cn, u(t, z), we obtain in the same way

/ﬂ [upr + f(u)ps] dadt > 0. (5.34)

Comparing the inequalities (5.33) and (5.34), we arrive at the equality
/ [ugr + f(u)ps] dedt =0 Vo(t,z) € Cg°(MNr), w(t,z) = 0.
Mr

This is the integral identity we were aiming at, except that we need it foratnay
(not necessarily nonnegative) functiore Cg°(M). Therefore, in order to conclude
the proof, it remains to notice that any functipne Cg°(My) can be represented as
the differencep = o1 — 2 Of two nonnegativeest functionsp; andy,. It is sufficient
to take a nonnegative functian € Cg° (M) with o1 = sup,, ¢ on the support op.
Since the relation (5.3) holds for bogh and,, it also holds true for. D

Proposition 5.13.Letu = u(t, z) be a piecewise smooth function that is a generalized
entropy solution of equatiofb.1) in the sense of Definitioh 11. Then on each discon-
tinuity curvel (given by the equation = z(¢)) the adequate admissibility condition,
(5.21) or (5.22), holds.

Proof. Fix a point(to,z0) € I', z0 = z(to), on the discontinuity curv€. As usual,
denote byu (o, o) the one-sided limits ofi(¢g, #) on T asz approachesy,. To be
specific, assume that (¢, z0) < uy(to,z0). Let us fix an arbitrary numbet €
(u—,u4) and choose a small neighbourha@d= My of the point(to, zo) such that

u(t,z) <k for (t,z) e O_ ={(t,z) € O]z < z(t)}, (5.35)
u(t,z) >k for (t,z) € OL ={(t,z) € O| x> x(t)}. (5.36)

This is always possible since we consider a piecewise smooth solutioneoiy
without loss of generality, we can assume thas smooth in each of the subdomains
O, andO_.
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From (5.30) it follows that for any test functiop € Cg°(0), ¢(t,x) > 0, there
holds

[ Tl b+ sigtu— 1) (£(0) = £(1) 0] dadt 0. (5.37)

Let us split the latter integral over the domairinto the sum of integrals ovep_ and
O, . Taking into account (5.35)—(5.36), we obtain
[ =B+ () - £(8) 2] dode
+ [l R+ (@) = 1) ) dede >0
Now let us transfer theandz derivatives according to the integration-by-parts formula
(4.1). In addition to the integrals over the domaihs andO,, also integrals over their

boundaries will arise, that is, we will get integrals ov&p and over N O. As ¢ is
compactly supported i@, the integral ovedO is zero. Consequently, we obtain

/ [us + (f(w))e]p do dt

. ((u— — k)ycogu,t) + (f(u-) — f(k)) coqv,z))p dS
)
(

_|

f/ T (Fw)e]) o dadt
= [ (e = Ry cosint) + (£(u) = () o) dS >0,

Herev is the normal vector to the cundepointing fromO_ to O (i.e., the outward
normal vector to the boundary 6f_ and, at the same time, the interior normal vector
for O,). According to Proposition 5.12, the function= u(¢, z) is a generalized (in the
sense of the integral identity (5.3)) solution of equation (5.1). Sinsesmooth in0,

it is also a classical solution of the equation in each of the subdoniainand O, .
Consequently, we have in both. andO.. the pointwise identityu; + (f(u)), = O.
Thus for any nonnegative test functipne C§°(0O), there holds

/rmo ((2k —u— —uy) cogu,t) + (2f (k) — f(u—) — f(uy))cOv,x))¢ dS = 0.
This means that for alt € (u_,u, ), we have

(2 —u_ —uy)cosw, t) + (2f (k) — f(u_) — f(us))coqv,z) > 0.  (5.38)

As already mentioned, = u(¢, x) is a generalized solution of equation (5.1). This
means, in particular, that the Rankine—Hugoniot condition (5.13) is satiafong the
discontinuity curvd™ (here we take this condition in the equivalent form (4.6)):

(s — ) cos(w ) + (f(us) — f(u_)) colv, ) = 0. (5.39)
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Taking into account (5.39), we can rewrite inequality (5.38) underdhma f
2[(k —u—)cogv,t) + (f(k) — f(u_)) cogv,z)]
— [(uy —u-)cogv,t) + (f(us) — f(u-))cogv,z)]
=2[(k—u-)coqu,t) + (f(k) — f(u_))coqr,z)] =0

forall k € (u_,uy). Thisis exactly the jump admissibility condition (5.21).

As to the caser; < u_, transforming the term sign — k) and the term with the
absolute value in equality (5.37) in the same vein as before, we obtain tls signs
in front of the same expressions. Accordingly, in place of the relati@8j5we get

(2k —u_ —uy)codw,t) + (2f(k) — f(u-) = f(us)) cogr,z) <O
forall k € (us,u_). With the help of (5.39), we obtain the inequality

(k) = f(us)) cog(v, )]
uy —u_)cov,t) + (f(us) — flu_)) coqv, z)]
[(k —us) coqw, t) + (f(k) — f(us)) cogv,z)] <O,

which holds for allk € (u,u_). This statement coincides with (5.22). m)

2[(k — uy)cogv, t) + (f
+(
2

Finally, let us show that inequality (5.30) can be derived from the vargshis-
cosity approach. Indeed, let= u(t,z) be a limit in the topology of_1 joc(M), as
e — 40, of classical solutions® = (¢, x) to the Cauchy problem consisting of the
equation
up + f(u)uy = eug, (5.40)

and the initial datumu(0, z) = uo(x).
Take any convex functio = E(u) € C?(R) and multiply equation (5.40) by
E'(u). The equalities
o, — OB(u(t, ) vy = O[T
Bl = R P, = ([ 1o P @)
_ E//(u)uz

imply
E+ (/k FEE'(€) d§>T =e(E(u)),, — eE"(u)u? < e (E(u)),, (5.41)
sinceE”(u) > 0 ande > 0. Now let us multiply inequality (5.41) by a test function

© = p(t,z) > 0 from Definition 5.11 and integrate it ovEkry. Using the integration-
by-parts formula, we transfer all the derivatives to the test fungtion

_/HT |:Q0tE(U) + ©u /ku f'(€)E'(€) df] dr dt < E/HT raB(u) dr dt
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Passing to the limit as — +0, we get
/n {%E(u) + o /k FOE©) df} da dt > 0. (5.42)

Let {E,.} be a sequence af?-functions approximating the functiom — |u — k|
uniformly onR. SubstituteE = E,,(u) in the inequality (5.42) and pass to the limit
asm — oo. We can choosé,, in such a way that, is bounded and), (¢) —
sign¢ — k) for all € € R, ¢ # k. Thus, we have

/kuf'@)E;L( de — kuf<>sigr(£ k) de
= sign(u — k /f ) de = sign(u — k) (f(u) — f(k)).

In this way, we deduce (5.30) from (5.42).
Problem 5.2.Justify in detail the last passage to the limit in the above proof.

Remark 5.14.In the case of a convex flux functioh = f(u), we can replace the
integral inequality (5.30) in the definition of a generalized entropy solutigritst,
the integral identity (5.3), and, second, the additional admissibility reanein¢ that the
inequality (5.42) holds for one fixed strictly convex functiéh= E(u). Uniqueness
of the so defined solution is shown in [39].

In the context of the inequality (5.42), a convex functior= E(u) is called an “en-
tropy” of the equation (5.1); indeed, inequality (5.42) is another vadéthe “entropy
increase-type conditions” in the sense of Section 5.3.

Remark 5.15.The definition of a generalized entropy solution on the basis of the in-
equality (5.30) extends to the multi-dimensional analogue of the probleip(5.2).
In this case, we have € R",

fTR—-R", (f(“))z = vwf(“(tvx))v 0z = Vi,

and(f(u) — f(k)) ¢, is the scalar product of the vectff(u) — f(k)) with the gra-
dient of ¢ with respect to the space variable This way to define the notion of a
solutionu = u(¢,z), and also the family of entropies — k|, k£ € R, is often named
after S. N. Kruzhkov (Kruzhkov’s solutions, the Kruzhkov entrojpieehese notions
were introduced in the works [25, 26]. Also the techniques of existemd@miqueness
proofs, techniques deeply rooted in the physical context of the prolblene set up in
these papers.
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6 The Riemann problem (evolution of a primitive jump)

In this section, we consider the so-called Riemann problem for equat®@n {hich is
the problem of evolution from a simplest piecewise constant initial daturat iEhwe
will construct admissible generalized solutions= (¢, z) of the following problem
inastriply = {—oo <z < 400,0<t <T}:

U_ for z <O,

6.1
Uy for z > 0, (6.1)

ue+ (f(w)a =0, ul,_g=muo(x) = {

whereu_ andu., are two arbitrary constant states. The solutions we want to construct
will be piecewise smooth ifl. This means that, first, they will satisfy the equation
in the classical pointwise sense on all smoothness components of the rsohrith
second, they will satisfy both the Rankine—Hugoniot condition (4.5) aacktitropy
increase condition on each curve of jump discontinuity. These solutionsamilerge
to the functionug ast — 40 at all points, except for the poimt= 0.

The proof of the uniqueness of an admissible generalized solution (iretise f
the integral identity and entropy increase condition) of the problem (éri)e found
in [27, Lectures 4-6]; its existence is demonstrated below with an explicgtoaction.

First of all, let us notice that the equation we consider is invariant undexhiiege
x — kx, t — kt; moreover, the initial datum also remains unchanged under the action
of homothetiesr — kz, & > 0. Furthermore, the entropy increase condition is also
invariant under the above transformations. Admitting the uniquenessadmissible
generalized solution of the above problem, we conclude that any cludingeiables
x — kz,t — kt with & > 0 transforms the unique solutien= u(t, z) of the problem
into itself, i.e.,

u(kt, kz) = u(t,z) Vk>O0.

This exactly means that the functian= (¢, ) remains constant on each ray= ¢t,
t > 0, issued from the origi(0, 0), so thatu(¢, ) depends only on the variatde= z /¢
u(t,z) = u(z/t), t>0. (6.2)

Solutions that only depend aryt are calledself-similar. In particular, jump dis-
continuity curves of self-similar solutions can only be straight rays etivapftom the
origin (0, 0).

Exercise 6.1 Find all the self-similar solutions of the equations from Exerdigsuch
that the solutions are smooth in the whole half-plane0.

6.1 The Hopf equation
To start with, consider the Riemann problem (6.1) in the ¢dsg¢ = u?/2:

{ U_ for z <0, (6.3)

ug +uu, =0 Ul,_g = uolT) =
t » ) |t:0 o) o for x > 0.
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First of all, we describe all the smooth self-similar solutions of the Hop&gqun.
Substituting (6.2) into the equation (6.3), we find

T /T 1 /z\ /2 1 ,/x x x
2 () 7e() v (5) =7 (7)) (7)) -7) =0
i.e., eitheru’ = 0, so that we have = C whereC is a constant, ot. = z/t. Conse-
guently, the set of all smooth self-similar solutions of the Hopf equationaesito the
constant solutions and to the functioyt.

Now our task is to juxtapose pieces of the above smooth self-similar soluti@ns
correct way (i.e., respecting the Rankine—Hugoniot and the entrapgase condition
on the discontinuity rays), with the goal to comply with the initial datugr= uo(z).

First, let us see which rays can separate two smoothness componesnishod
solution: two adjacent components may correspond either to two diffemgrstant
states, or to a constant state and to the restriction of the funefibon some cone
with the vertex(0, 0).

It follows from the Rankine—Hugoniot condition (4.5) that two constamictions
u(t, z) = ug andu(t, z) = up, u; = const, can only be juxtaposed along the ray

f(uz)—f(ul)t_lug—u%t_u2+u1

xr = = =
U — Up 2 up —ug 2

2

and because of the entropy increase condition, the jump is admissible belyww
jumps from a greater to a smaller value (we mean that the direction of theigsaph
thatz grows). Consequently, if we specify, e.g., that> u;, then we should have

U + uq
2

As to the juxtaposition of a constamtt, =) = uz = const and the functioa(t, z) =
x/t, we have the following. If the two functions juxtapose along axray &t, then the
limit of the functionz/¢ on this ray equalg, and (4.5) yields

eSO _1B-€ _uae
odt uz — & _2u:37§_ 2 7

u + uq

u(t,x) =up for z < t.

t, and u(t,z)=wu; for z >

so that¢ = us. The latter means that the function obtained by the juxtaposition turns
out to be continuous on the border ray= ¢t = ugt, t > 0. Consequently, here the
discontinuity is a weak, not a strong one.

Now we can solve completely the Riemann problem for the Hopf equatiore, He
two substantially different situations should be considered:

() Whenwu_ > u,, we can construct ahock wavesolution, where the two con-
stantsu_ andu. are joined across the ray= “254¢, according to the Rankine—
Hugoniot condition (see Fig. 16):

U_+uq

U_ for < =——t,
u(t,z) = (6.4)

Uy for x > “’7;“*15
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1.2
f flwFqu* X
142 u_+u,
2U- u, = 7 t
u+
1,2 u_
U+ u i Pt S
u, u_ 0 t
u_

Figure 16. Shock-wave solution to the Riemann problem.

As has already been mentioned, the jump discontinuity in the desired solution is
compatible with the admissibility condition of increase of entropy.

(i) If u— < uy, we cannot take the shock wave solution analogous to the previous
case, because the jump discontinuity would not satisfy the entropy ircteas
dition. Here the function: /¢ is helpful; it can be combined continuously with the
constant states_ andu.. (see Fig. 17):

U_ for z <wu_t,
u(t,z) =4 x/t for u_t <z < uyt, (6.5)
Uy for z > u t.

The so defined solution is indeed continuous in the whole half-plan®. The
cone determined by the inequalitiest < = < u.t, t > 0, in which the smooth-
ing of the initially discontinuous function takes place, is calledrdggon of rar-
efactionof the solution, and the solution (6.5) itself is calleckstered rarefaction
wave

xh  X=u,t
f f(u)= 5 u? u,
%ui u, X/t
2 ]
%u' u 0 X t
. Ju . 7t
- -
x=u_t

Figure 17. Rarefaction-wave solution to the Riemann problem.

Let us give a comment of geometrical nature to the solutions obtainealvidy
the graph of the functiorf(u) = »?/2 relative to the axeu, f), parallel to the axes
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(t,z), let us mark the point§u_,«? /2) and (u,,u? /2) on the graph. Then, as it
has already been mentioned, the discontinuity ray in solution (6.4) is famallee
segment joining these two points (see Fig. 16). Also observe the followttdih the
sequel, we will see that this is by no means incidental): the lines of weakdiisaay
of the solutionu = w(t, z) given by (6.5), namely the two rays= u_t andz = u.t,
are parallel to the tangent directions to the graph of the fungtian = »?/2 at the
points(u_, f(u_)) and(uy, f(uy)), respectively.

Remark 6.1.Whenu_ > u,, formula (6.5) is meaningless: no function in the upper
half-planet > 0 is determined by this formula.

Problem 6.1.Show that the solution constructed above, given(@®#) or by (6.5),
according to the sign ofu_ —u. ), is the unique admissible generalized solution of the
Riemann problen(6.3) within the class of all self—similar piecewise—smooth functions.

6.2 The case of a convex flux function

In the case wher¢ = f(u) is a smooth strictly convex function, the solution of the
Riemann problem (6.1) is almost the same as for the case of the Hogti@ygi.e.,
as for the cas¢(u) = u?/2). The only difference is that the non-constant smooth
self-similar solutionu(¢, z) = x /¢ of the Hopf equation is replaced by the appropriate
smooth function) = +(x/t). Let us find this function). As above, we substitute (6.2)
into (6.1) and obtain

_E !/ } ! ! __ } !/ / _ _

Hu + SF ' = S (@) (F (u(@/t)) —2/t) = 0.

Therefore, besides the constants obtained from the equdtienO, there exists one
more functionu(¢) = (&) (here¢ = z/t) defined as the solution of the equation

f)=¢

That is,+ is the function inverse tg’: we havey = (f’) ~. The inverse function
does exist sincg is strictly convex, so that’ is a strictly monotone function. The
solutionu(t, z) = ¢ (x/t), which is discontinuous &0, 0) and continuous fot > 0, is
acentered rarefaction wave

-1

Remark 6.2.In the previous section, for the particular case of the Hopf equation, we
had f'(u) = u, so thati:(¢) = (f) " (€) =&
In the case of a general strictly convex flux functibn= f(u), we construct the
solution of the Riemann problem (6.1) similar to the case of the Hopf equaonely:
() Whenu_ > wu,, then we can use the shock wave again, juxtaposing the two
constant states_ andu, separated by the ray = {{)=/l=) 4 > 0, the slope

u

of the ray being found from the Rankine—Hugoniot condition:

(t.2) u_ for z < wh 6.6)
u(t,r) = N .
Uy for g > flu)=flu)y

Uy —U_
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(Compare with (6.4) and Fig. 16.) The jump in the solution obtained is atidss
according to the entropy increase condition.

(i) Whenu_ < uy, then the function given by (6.6) is a generalized solution but it
does not satisfy the entropy increase condition. Then, similar to the aotistr
of (6.5), we combine the constant statesandwu. with the non-trivial smooth
solutiony = ¢ (x/t). The rayse = £_t andz = £, t, where the transition occurs,
are determined by the requirement of continuity of the solution= ¢ (¢4.), i.e.,
&+ = f'(uy), so that

u_ for = < f/(u_)t,
u(t,z) =< ¥ (z/t) for f/(u_)t <ax < f'(uy)t, (6.7)
Uy for x > f'(uy)t.

The function given by (6.7) is well-defined in the upper half-plane 0; indeed,
the flux functionf = f(u) is strictly convex, thug” is an increasing function, so that
f(u_) < f'(uy) whenever_ < uy.

The rarefaction wave) = «(z/t), being continuous for > 0, takes all the in-
termediate values between andu.. As ¢ is defined as the inverse function of
f/, the conditiony (x/t) = 4 is equivalent to the equality = f’(a)¢ valid for all
@ € [u_,uy]. This means that the rarefaction waye= v (z/t) takes a given inter-
mediate value; on the rayz = f/(4)t, t > 0. We can see that this ray is parallel to
the direction tangent to the gragh= f(«) at the point(a, f(u)) of the graph. Thus
in particular, we have justified the statement already noted in the previotisrsethe
rays of weak discontinuity of the solutian= u(t, z) given by formula (6.7) (i.e., the
raysxz = f’(u4 )t) are aligned with the directions tangent to the grgph f(u) at the
endpoints(u, f(u+)) (see Fig. 17). (As always, we assume that the dxeg) are
aligned with the axe§, x).)

Remark 6.3.Note that the convexity of = f(u) is only needed on the segment
[u—,us] (O [ur,u_], if uy <wu_).

Concerning the case of a strictly concave and smooth (on the segntestbe
andu..) flux function f = f(u), the unique self-similar admissible generalized solution
to the Riemann problem is constructed by exchanging, in a sense, the tatositu
described above. Namely: for the case < ., we obtain the shock wave (6.6); if
u_ > uy, then the solution is given by (6.7) (in this cages a decreasing function,
consequently, here we hay&u_) < f'(us)). The careful derivation of the formulas
is left to the reader:

Problem 6.2.Solve the Riemann problef@.1) in the case of a general smooth strictly
concave flux functiorf = f(u); represent the piecewise smooth solution graphically
(as in Fig.16 and 17); check the validity of the Rankine—Hugoniot condition, and of
the entropy increase inequality on the jumps.

Exercise 6.2.Solve the following Riemann problems:
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() ue — (u?); =0,

o = -1 for z <0, and | = 1 for z <0,
=0 ) 1 forz>0 =0 ) —1 for x>0;

(i) w4+ u?-uy =0,

o= 0 forz <0, and u|_ - 2 for z <0,
=01 2 forz>0 =0 ) 0 fora>0;

0 forz<0O,
m  for z >0,

| x for 2z <O, and | x  for z <0,
u = U =
t=0 0 forz>0 t=0 2r for x> 0;

(iii) w; + cosu - u, =0, u|t:0 = {

(iv) us +e*-u, =0,

u_ = 0 forz <O, and u|_ - 1 forz <O,
=011 forz>0 =0 ) 0 fora>0;

(V) us + (Inw), =0,

u = e for z <0, and u|_ - 1 for z <O,
=011 forz>0 =01 e for z>0.

6.3 The case of a flux function with inflexion point

In order to treat the Riemann problem in the case wifere f(u) is neither convex
nor concave, let us first give two definitions.

Definition 6.4. The concave hullof a functionf = f(u) on a segmenjw, 3] is the
function . .
flu) = inf f(u), ue€a,pl,
fek
where F' is the family of all concave functiong = f(u) defined on|a, 4] such that

f(u) = f(u)forallu € [, 5].

Definition 6.5. Theconvex hulbf a functionf(«) on a segmerity, 3] is the function

v

f(w)=supf(u), weap],

feF

where F is the family of all convex functiong’ = f(u) defined ona, 3] such that

f(u) < f(u) forallu € [a, 8].

Remark 6.6.1f f is a concave (respectively, convex) function[anj], then the func-
tion itself is its concave (respectively, convex) hufl: = f (respectively,f = f);
furthermore, the graph of its convex (respectively, concave) huhasstraight line
segment joining the endpoints, f(«)) and(3, f(3)) of the graph.
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Exercise 6.3. Construct the concave and the convex hulls for the functian = «*
on the segmenjt-1, 1] as well as for the functiorf(u) = sinu on the segmeni0, 3r|.

To solve the Riemann problem (6.1) for a given smooth flux funcfiea f(u) in
the case:_ < u4, we first construct the convex hull gfon the segmerit:_, uy]. In
the case:_ > u., we construct the concave hull ¢fon the segmerjti, u_].

The graph of any of the hulls consists of some parts of the gragh where the
graph has the right convexity/concavity direction, and of straight linensegs con-
necting these pieces of the graphfafee the above exercise). Each of the straight line
segments will correspond to a jump ray (thus, to a shock wave) in the sohitithe
Riemann problem; each of such rays will separate two componentsafteness of
the solution. Each of these components can either be a constantstaie:(, ), or a
smooth self-similar solution of the form(t, z) = ¢ (x/¢) (i.e., a centered rarefaction
wave). Herey = (&) is the function (locally) inverse tg’, so thatt = f'(u) (see
Section 6.2). Notice that on each segment of strict convexity/concality-e f(u)
the functionf’ is indeed invertible.

Example 6.7.Let us construct the solution (i.e., the self-similar admissible generalized
solution) of the following Riemann problem:

1 for x <0,

6.8
-1 for z > 0. (6.8)

u+ (u)e =0, ul_o= {

First, because ofi . = 1 > —1 = u, we construct the concave hull of the flux

function f(u) = »* on the segmerit-1, 1]. To perform the construction, we draw the

tangent line to the graph at the right endpdihtl) of this graph. The tangency point,
denoted by(, 4%) can be determined from the condition

1-43
1-a

i.e., 1+ 4+ a2 = 342, whenceu = —1/2. Notice that the piece of the graph of
f(u) = u® between the left endpoir{t-1, —1) of the graph and the tangency point
(-1/2,(-1/2)%) is concave. Thus we see th#lie graph of the concave hyllof the
function f(u) = »* on the segment-1, 1] consists of: first, the piece of the “cubic
parabola’f = f(u) = u® on the segment-1, —1/2]; and second, the straight line
segment that joins the poinfs-1/2,—1/8) and(1,1) (see Fig. 18). Therefore, the
solution of the Riemann problem under consideration has one and ontgypne-= £t,

t > 0, on which the solution has a jump. This ray is parallel to the straight lineeggm
in the graph off = f(u) (as usual, for the sake of convenient graphical representation,
the axedt, ) are aligned with the axds, f)); expressing analytically the slope of the
strong discontinuity ray, we have

~1+1/8 3

1412 4

8NT— This conclusion requires some thinking; it is based on stearsy-to-justify properties of the concave
hull. In particular, one always hagla) = f(a) = f(a), f(8) = f(B8) = f(B), with the notation of the
definitions. The reader who analyzed the examples of Execskas already performed this construction.

— F@) =3 a+1

£
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This ray separates the constant state= 1 (taken from the side < %t) and a piece
of rarefactiony(z/t). Herey = +(¢) is the function inverse t¢ = f'(u) = 3u? on
the segmenit-1, —1/2], so that we have

w=(€) = —VEB,  3/4<e<3.

The limit of the solutionu = (¢, z) from the sidex > 3¢ on the jump rayz = 3t
equalsy(2) = —3 (this stems from the fact that(—3) = 3(—3)? = 3).

As for the case of a convex flux function (see Section 6.2), the juxiEmo®f
the rarefaction wave: = +)(x/t) and the constant state. = —1 occurs continuously,
that is, these two smoothness components are separated by the weakimisty ray
x = 3t,t > 0. Once more, this ray is aligned with the tangent direction at the point
(ug, f(us)) = (uyg,ud) = (=1, -1) of the graph of the flux functiorfi(u) = u3.

f f(u)=u3 X=3t
1 X X=3/41
-1 l
“V3t
us-l -1/2 u
0 u=1 1
t
1
-1

Figure 18. Solution for Example 6.7.

Thus we obtain the following solution of problem (6.8):

1 for z < 3t,
u(t,z) =49 —/% for 3t < < 3t
-1 for « > 3t.

Exercise 6.4 Construct the solution of the Riemann problem

-2 for z <0,

> _
up +u” - uy =0, “’to_{ 2 for x > 0.

Example 6.8.Let us solve the Riemann problem

3r for z <0,

ug + (sinu), =0, U|t:o = { 0 for z >0

As we have:_ = 37 > 0 = u,, we have to construct the concave hiil= f(u) of
the graph off (u) = sinu on the segmeri0, 3x|. The graph off (see Fig. 19) consists
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of two pieces of concavity of the graph ffu) = sinu, those on the segmer| 7 /2]
and[5r/2, 3x|, and of the horizontal segment joining the poifit$2, 1) and(57/2, 1)
of the sine curve. We conclude that the solutios= u(¢, z) should have one strong
discontinuity (jump) along the ray = 0, separating the one-sided limit states

5r . T .
- = mlrnou(t,m) and 5= III_T_QU(LI).
We also see that
3r forx < f/(37) -t =cos3r-t = —t,
u(t,z) =
0 forz > f/(0) -t =t.

¢ x=t
f=u *
0
X
TG I i W
0=u, 12 . 5m/2 3m=u_ Arocos % O
f(u)=sinu
3n

X=-1

Figure 19. Solution for Example 6.8.

It remains to express from the equation
f(u) =cosu=¢=ua/t

on the segmentl®, 7 /2] and [57/2, 3x]. By construction, it is not surprising that the
function f’(u) = cosu is monotone on these segments. Solutions of the equation
cosu = &, —1 < £ < 1, are well-known: we have = +arccos + 2an,n € Z.

On the segmenD, 7/2], the solution specifies to = arccog, while on the segment
[57/2, 37| we getu = arccog + 2w. Recapitulating, the solution we have constructed
looks as follows (see Fig. 19):

3r for z < —t,
u(t,z) = arccose/t + 2w for —t<xz<0,
’ arccoss/t for 0 <z < ¢,
0 for = > t.

The solution of the Riemann problem will change drastically if we exchange th
valuesu, andu._.

Example 6.9.Construct the solution of the Riemann problem

0 for x <0,

ug + (sinu), =0, u|t:0 B { 3 for x>0
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Now we have to start by constructing the convex hl= f(u) of the function
f(u) = sinu on the segmen{0, 3r] (see Fig. 20). It consists of two segments of the
lines issued from the graph’s endpoi(@s0) and(3r, 0), the lines being tangent to the
sine graph at some points contained within2z], each of the segments being taken
between the endpoint and the tangency point, and of the convex pieceafithcurve
between the two tangency poiriis;, sinui) and(uz, Sinuy). Symmetry considerations
readily yield the equalities; + u, = 3, Sinuy = sinuy; also the slopes of the two
tangent segments constructed above only differ by their sign. Denote by

flu) = f(0) _ sinuy _

—k =
’LLlfo ug

f'(u1) = cosuy

the slope of the tangent segment passing through the endfo@)t Then-+k is the
slope of the other tangent segment. We cannot find explicitly the exadsvafu,, u;
andk, but we can say that; is the smallest strictly positive solution of the equation

tanuy, = w1, thatus = 37 — uq, and thatt = — cosu; = cosus.
f X
f(u)=sinu 3n x=kt
T UU, 27’[ u X
0o T 0 27t - arccos t
f=-ku 0 x=-kt

Figure 20. Solution for Example 6.9.

On the segmentuy, uy] C [m, 27|, we can invert the functiof’(u) = cosu. In

this casey = (f/) " (¢€) = 27 — arccost, —k < & < k. Now we can write down the
“almost explicit” solution (depicted in Fig. 20):

0 for x < —kt,
u(t,z) =< 2r —arccose/t  for —kt < x < kt,
37 for = > kt.

The solution above has two strong discontinuities: the one across the kne-kt
with the jump from O tou;, and the one across the lime= k¢ with the jump fromu;
to 3r.

Exercise 6.5 Construct the solution of the Riemann problem

—5r/4 for z <0,

Ut -+ SII’I(ZU) Uy = 0, ’U,|t:0 = { 50_(_/4 for T > 0
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Afterword

In the present lecture course, we have introduced the reader to thesatid tools
which underly the nonlocal theory of the Cauchy problem for the onesdgional (in
the space variable) quasilinear conservation law of the form

e+ (f(u), =0, (6.9)
As to the nonlocal theory for the multidimensional scalar equation
up + div, f(u) =0, reR", (6.10)

wheref is ann-dimensional vector-function, it appeared in a rather complete form at
the end of the 1960s (see [25, 26]), for the case where the comigsohes f;(u)

of the flux function vectorf = f(u) satisfy a Lipschitz continuity condition. This
assumption of Lipschitz continuity results in the effects of finite speed qfggation

of perturbations and of finite domain of dependence (at a fixed gaim}) on the
initial data for the solutions of equation (6.10).

A further challenge in the nonlocal theory of equations (6.9) and J6id€ in its
generalization to the case where the flux functfos f(u) is merely continuous, i.e.,
it is not necessarily differentiable. In this case, one expects that ptpahabolic”,
“diffusive” effects should appear: namely, the effects of infiniteespef propagation
of perturbations and of infinite domain of dependence of entropy sokitinithe initial
data.

Indeed, let us look at the construction of the admissible generalizeggrsotution
of the Cauchy problem

ug + (%) =0, r € R, a € (0,1), (6.11)
ign(z + 1) — signz 1, z € (—1,0),
ul, o= uo(z) = [sign(z + 2) signz| _ { o ; E—L O;. (6.12)

As we have initiallyug(x) > 0, it can be deduced from Definition 5.11 that the gener-
alized entropy solutiom = u(t, ) of the problem (6.11)—(6.12) is also nonnegative.
Consequently, in (6.9) the flux functiof{u) = u®/« is concave on the interval of all
values that could be possibly taken by the solutioa «(¢, z). On the other hand, be-
cause of the special (“single-step”) structure of the initial function, it fba expected
that, for a sufficiently small time interval & ¢ < §, the admissible generalized solu-
tion of our problem will be determined by the solutions of the two Riemannlena®
with the initial functions sigfw + 1) and signe, respectively.

Problem 6.3.Check that the function

0 for z < L -1,
u(t,r) = 1 for L —1<a<t,

1

()&= for z >t
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0 x=x(t)

e 4

0 g/ (L)

Figure 21. Solution of problem (6.11)—(6.12).

(see Fig.21 for a graphic representation of this function) defines a piecewise smooth
admissible generalized solution of the probl&rl1)—(6.12)n the time intervalD <
<2, =0.

Problem 6.4.Extend the above solution = (¢, z) of the problem(6.11)—(6.12)to
the half-space > ¢ = 2. More exactly, find the equation of the discontinuity curve
x = x(t), using fort > ¢ the ansatsee Fig.21)

0 forz < a(t),

u(t,z) = B
{ (%) 1-a for z > x(¢).
Consequently, for the compactly supported initial function (6.12), tmegdized
entropy solution: = u(¢, z) of the Cauchy problem for equation (6.11) has ia non-
compact (unbounded) support, for all time- 0 (thus, for an instant of time as small

as desired!). Itis known that, in the theory of parabolic PDEs (modeliififigsilze pro-
cesses in nature), such effect of infinite speed of propagation leadstaniqueness
of a solution of the Cauchy problem. What would be the influence of thesedn the
theory of nonlocal solvability of the Cauchy problem for equation (6.2@bhin the
class of all essentially bounded measurable functions in the upperlaaé®lt turns
out that, without any further restriction on the continuous compongnts f;(u) of
the flux function, there exists at least one generalized entropy solutithre @@auchy
problem. Contrarily (as it has been observed for the first time in the &8, the
property of uniqueness of a generalized entropy solution of this probtemnbe con-
nected with the product of the moduli of continuity of the functionsf;. If for all
u,v € R

[fi(w) = fi(v)] < willu —vl), (6.13)

wherew; is a concave, strictly increasing and continuous functiorj0oa-co) with
w;(0) = 0, then it is sufficient that for smafl

Q(p) = [ [ wilp) < constp™%; (6.14)
i=1
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i.e., the restriction (6.13)—(6.14) ensures the uniqueness of aadigrd entropy solu-
tion to a Cauchy problem for equation (6.11).
Further, let us stress that for the equation

|l Jul?
ut+(7)x+(7)y—0, O<a<p<l,
the restriction (6.14) (which, for this concrete case, takes the fosn3 > 1), is both
necessary and sufficient for the uniqueness of a generalized grsodytion to the
Cauchy problem with general initial datum. The corresponding cour@erple was
constructed by E. Yu. Panov (see, e.g., [28]).

Notice that in the case = 1 the condition (6.14) imposes no restriction at all on
the merely continuous flux functiofi = f(u): in the one-dimensional situation, a
generalized entropy solution to the Cauchy problem is always unique.

Also notice that in the work [28] a rather simple proof of the uniquenessgeier-
alized entropy solutions is given under the assump@¢p)/p"~* — 0 asp — 0 that
is slightly stronger than (6.14).

In conclusion, let us say that the nonlocal theory of first-order quasitinonserva-
tion laws, whose rigorous mathematical treatment started in the 1950th dstixely
developing. Many interesting problems remain unsolved, even for teonensional
equation (6.10). But most topical and interesting are the problemsrdeceation
laws in the vector case, even for the simplest situations. Indeed, letns&eo the
well-known “wave equation” system

ug — v, = 0,

vy —u, = 0.
This system was the very first object of research in PDEs (then callathématical
physics”), in the works of D’Alembert and Euler. In order to take intoamt certain
nonlinear dependencies in the process of wave propagation cormsideesreplaces the
linear expressiom,. in the first equation by the nonlinear expressfpfv)).., wherep

is a function withp’(v) > 0. In this case, there arises the so-callpéystem”, which
is well-known in the theory of hyperbolic systems of conservation laws:

{ u — (p())s = 0,

U — Uy = 0.

This system is another simple (although more complex than the Hopf eqiatigh
but important model in the field of gas dynamics. Alas, nowadays, wlatee the
non-linearityp = p(v), nobody in the entire world knows how to define the “correct
entropy solution of this problem.

Thus a slightest nonlinear perturbation of a simple linear system resultseér-an
tremely difficult unsolved problefrin the field of nonlinear analysis.

9NT — These are words of S. N. Kruzhkov, spoken out in 1997 shbsfgre his passing away. Since then,
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Hopefully, the topical, simple-to-formulate, both “natural” and difficultdief non-
local theory of quasilinear conservation laws will yet attract the attentioyoahg,
deep-thinking researchers, able to invent new approaches awaytlie traditional
guidelines.
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